Category Archives: Work

Phil 2.12.16

6:30 – 4:30 VTX

  • Continuing Participatory journalism – the (r)evolution that wasn’t. Content and user behavior in Sweden 2007–2013
  • Create xml configuration file
  • Integrate Flyway?
  • Meeting on rating tool. Thoughts:
    • Add a ‘I goofed’ button to the GUI (or maybe a ‘back’ button that lets you change the rating?
    • Add more info that pops up medical provider.
    • Add an analytics app that looks for ratings that disagree, either as outliers (watch out for that reviewer) or there is disagreement (are we having problems with terms, fuzzy matching, or what?)
    • Add a second app that tags the ontology onto the ‘Flaggable Match’
    • Write up a guidance manual for edge conditions. Comes up when you click ‘help’
    • When an url comes up that has already been reviewed more than N times and the reviews match substantially (A majority? – means odd numbers of reviews) for the same provider don’t run that result item, just add a copy of the rating object wit the name of (‘computed’)
  • Return from NJ

Phil 2.11.16

6:00 – 4:00 VTX

  • Continuing Participatory journalism – the (r)evolution that wasn’t. Content and user behavior in Sweden 2007–2013
  • Need to see if I can get this on Monday: Rethinking Journalism: trust and participation in a transformed news landscape. Got the kindle book.
  • Need to add a menubar to the Gui app that has a ‘data’ and ‘queries’ tab. Data runs the data generation code. Queries has a list of questions that clears the output and then sends the results to the text area.
  • Still need to move the db to a server. Just realized that it could be a MySql db on Dreamhost too. Having trouble with that. It might be the eclipse jar? Here’s the hibernate jar location in maven:
    <groupId>org.hibernate.javax.persistence</groupId>
    <artifactId>hibernate-jpa-2.0-api</artifactId>
    <version>1.0.1.Final</version>
  • Gave up on connecting to Dreamhost. I think it’s a permissions thing. Asked Heath to look into creating a stable DB somewhere. He needs to talk to Damien.
  • Webhose.io – direct access to live & structured data from millions of sources.
  • Search by date: https://support.google.com/news/answer/3334?hl=en
    • Google news search that produces Json for the last 24 hours:
      ?q=malpractice&safe=off&hl=en&gl=us&authuser=0&tbm=nws&source=lnt&tbs=qdr:d
  • Played around with a bunch of queries, but in the end, I figured that it was better to write the whole works out in a .csv file and do pivot tables in Excel.
  • Adding the ability to read a config file to set the search engines, lables, etc for generation.

Data Architecture Meeting 2.11.15

Testing what we have

  • Relevance score
  • Pertinence score
  • Charts for management

Vinny

  • Terminology
  • gov
  • Bias towards trustworthy unstructured sources.
  • What about getting structured data.

Aaron

  • Isolate V1 capability
  • Metrics!
  • We need the structured data!!

Matt

  • Dsds

Scott

  • Questions about unstructured query

Phil 2.10.16

Phil 8:00 – 6:00 VTX

  • Finished Anonymity Loves Company – Anonymous Web Transactions with Crowds
  • Figured out how to use code families. Not obvious at all fromthe documentation (too many types of families!), but obvious once you see it. Just select one or more codes in the code manager, right-click in the ‘family’ pane and select ‘New from Selected Items’
  • Enough with the cryptography and back to people! Participatory journalism – the (r)evolution that wasn’t. Content and user behavior in Sweden 2007–2013
  • Up to NJ with Aaron for the rest of the week.
  • Start adding capability to rate existing query results. Done
  • Some output!
    MariaDB [googlecse1]> select search_type, display_link, rating, date_rated, user_name from view_rated_items order by rating;
    +-------------------------------------+------------------------------+-----------------+---------------------+-----------+
    | search_type                         | display_link                 | rating          | date_rated          | user_name |
    +-------------------------------------+------------------------------+-----------------+---------------------+-----------+
    | ALL_ORG(Ram Singh: malpractice)     | www.consumerwatchdog.org     | flaggable match | 2016-02-10 15:43:38 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | caselaw.findlaw.com          | flaggable match | 2016-02-10 15:37:25 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | www.consumerwatchdog.org     | flaggable match | 2016-02-10 15:26:19 | Phil      |
    | ALL_US(Ram Singh: criminal)         | w3.health.state.ny.us        | flaggable match | 2016-02-10 15:17:02 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | www.consumerwatchdog.org     | flaggable match | 2016-02-10 15:33:06 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | law.resource.org             | flaggable match | 2016-02-10 15:27:10 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | www.courtlistener.com        | flaggable match | 2016-02-10 15:39:12 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | www.ncmedboard.org           | flaggable match | 2016-02-10 15:31:59 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | law.resource.org             | flaggable match | 2016-02-10 15:32:12 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | www.rfhha.org                | flaggable match | 2016-02-10 15:43:25 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | www.ncmedboard.org           | flaggable match | 2016-02-10 15:44:43 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | www.alasu.edu                | legal           | 2016-02-10 15:36:26 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | imageserver.library.yale.edu | legal           | 2016-02-10 15:36:28 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | www.academia.edu             | legal           | 2016-02-10 15:35:44 | Phil      |
    | ALL_US(Ram Singh: criminal)         | www.co.jefferson.tx.us       | legal           | 2016-02-10 15:16:41 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | indiankanoon.org             | legal           | 2016-02-10 15:25:51 | Phil      |
    | ALL_US(Ram Singh: criminal)         | docslide.us                  | legal           | 2016-02-10 15:15:23 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | archive.org                  | legal           | 2016-02-10 15:45:13 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | indiankanoon.org             | legal           | 2016-02-10 15:26:00 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | indiankanoon.org             | legal           | 2016-02-10 15:32:34 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.legalindia.com           | legal           | 2016-02-09 14:57:59 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | www.norcobar.org             | legal           | 2016-02-10 15:40:44 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | www.indianbarassociation.org | legal           | 2016-02-10 15:34:02 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | indiankanoon.org             | legal           | 2016-02-10 15:30:54 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | www.indiankanoon.com         | legal           | 2016-02-10 15:38:38 | Phil      |
    | ALL_US(Ram Singh: board actions)    | docslide.us                  | legal           | 2016-02-09 14:59:35 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | indiankanoon.org             | legal           | 2016-02-10 15:43:52 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | ww3.lawschool.cornell.edu    | legal           | 2016-02-10 15:36:20 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | www.clarkcountymedical.org   | match           | 2016-02-10 15:41:51 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.healthgrades.com         | match           | 2016-02-09 14:57:29 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | www.intelius.com             | match           | 2016-02-10 15:38:22 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | jmidlifehealth.org           | medical         | 2016-02-10 15:44:17 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | mic.com                      | Not appropriate | 2016-02-10 15:37:09 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | indiankanoon.org             | Not appropriate | 2016-02-10 15:42:24 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | www.vacouncilofchurches.org  | Not appropriate | 2016-02-10 15:33:18 | Phil      |
    | ALL_ORG(Ram Singh: malpractice)     | www.pbs.org                  | Not appropriate | 2016-02-10 15:45:57 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | wtkr.com                     | Not appropriate | 2016-02-10 15:39:23 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | www.law.fsu.edu              | Not appropriate | 2016-02-10 15:34:38 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | modelminority.com            | Not appropriate | 2016-02-10 15:38:56 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | www.alasu.edu                | Not appropriate | 2016-02-10 15:34:42 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | wiki.verkata.com             | Not appropriate | 2016-02-10 15:38:30 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | www.facebook.com             | Not appropriate | 2016-02-10 15:37:55 | Phil      |
    | RESTRICTED_COM(Ram Singh: criminal) | search.ancestry.com          | Not appropriate | 2016-02-10 15:37:40 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | www.academia.edu             | Not appropriate | 2016-02-10 15:35:18 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | lists.washlaw.edu            | Not appropriate | 2016-02-10 15:36:36 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | lists.washlaw.edu            | Not appropriate | 2016-02-10 15:35:53 | Phil      |
    | ALL_EDU(Ram Singh: criminal)        | www.utexas.edu               | Not appropriate | 2016-02-10 15:34:55 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | netsecu.org                  | Not appropriate | 2016-02-10 15:32:47 | Phil      |
    | ALL_US(Ram Singh: board actions)    | www.gutenberg.us             | Not appropriate | 2016-02-09 14:59:57 | Phil      |
    | ALL_US(Ram Singh: board actions)    | www.leg.state.mn.us          | Not appropriate | 2016-02-09 14:59:13 | Phil      |
    | ALL_US(Ram Singh: board actions)    | www.nhusd.k12.ca.us          | Not appropriate | 2016-02-09 14:59:02 | Phil      |
    | ALL_US(Ram Singh: board actions)    | www.acoe.k12.ca.us           | Not appropriate | 2016-02-09 14:58:59 | Phil      |
    | ALL_US(Ram Singh: board actions)    | www.nhusd.k12.ca.us          | Not appropriate | 2016-02-09 14:58:30 | Phil      |
    | ALL_US(Ram Singh: board actions)    | datab.us                     | Not appropriate | 2016-02-09 14:58:16 | Phil      |
    | ALL_US(Ram Singh: board actions)    | newweb.altoona.k12.wi.us     | Not appropriate | 2016-02-09 14:58:11 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.linkedin.com             | Not appropriate | 2016-02-09 14:57:11 | Phil      |
    | BASELINE(Ram Singh: board actions)  | en.wikipedia.org             | Not appropriate | 2016-02-09 14:57:06 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.dailymail.co.uk          | Not appropriate | 2016-02-09 14:57:02 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.ndtv.com                 | Not appropriate | 2016-02-09 14:56:56 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.india.com                | Not appropriate | 2016-02-09 14:56:52 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.firstpost.com            | Not appropriate | 2016-02-09 14:52:41 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.youtube.com              | Not appropriate | 2016-02-09 14:48:13 | Phil      |
    | ALL_US(Ram Singh: board actions)    | www.curatedobject.us         | Not appropriate | 2016-02-09 15:00:04 | Phil      |
    | ALL_US(Ram Singh: board actions)    | datab.us                     | Not appropriate | 2016-02-09 15:00:10 | Phil      |
    | ALL_US(Ram Singh: criminal)         | www.curatedobject.us         | Not appropriate | 2016-02-10 15:14:14 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | www.acoe.org                 | Not appropriate | 2016-02-10 15:31:06 | Phil      |
    | ALL_ORG(Ram Singh: board actions)   | en.wikipedia.org             | Not appropriate | 2016-02-10 15:30:21 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | fr.wikipedia.org             | Not appropriate | 2016-02-10 15:28:13 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | en.wikipedia.org             | Not appropriate | 2016-02-10 15:26:40 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | www.vacouncilofchurches.org  | Not appropriate | 2016-02-10 15:26:35 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | ca.wikipedia.org             | Not appropriate | 2016-02-10 15:25:21 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | en.wikisource.org            | Not appropriate | 2016-02-10 15:24:59 | Phil      |
    | ALL_ORG(Ram Singh: criminal)        | ca.wikipedia.org             | Not appropriate | 2016-02-10 15:24:43 | Phil      |
    | ALL_US(Ram Singh: criminal)         | hodges-directory.us          | Not appropriate | 2016-02-10 15:18:46 | Phil      |
    | ALL_US(Ram Singh: criminal)         | docslide.us                  | Not appropriate | 2016-02-10 15:15:52 | Phil      |
    | ALL_US(Ram Singh: criminal)         | www.nhusd.k12.ca.us          | Not appropriate | 2016-02-10 15:15:37 | Phil      |
    | ALL_US(Ram Singh: criminal)         | www.nhusd.k12.ca.us          | Not appropriate | 2016-02-10 15:15:34 | Phil      |
    | ALL_US(Ram Singh: criminal)         | www.acoe.k12.ca.us           | Not appropriate | 2016-02-10 15:15:31 | Phil      |
    | ALL_US(Ram Singh: criminal)         | www.gutenberg.us             | Not appropriate | 2016-02-10 15:14:33 | Phil      |
    | BASELINE(Ram Singh: board actions)  | www.firstpost.com            | Not appropriate | 2016-02-09 14:46:59 | Phil      |
    +-------------------------------------+------------------------------+-----------------+---------------------+-----------+
    80 rows in set (0.02 sec)

Phil 2.9.16

7:00 – 4:00 VTX

  • Finished Publius: A robust, tamper-evident, censorship-resistant web publishing system
  • Starting Anonymity Loves Company – Anonymous Web Transactions with Crowds by Mike Reiter and Aviel Ruben, who was one of the co-authors on the Publius paper.
    • Crowds could probably be built with PeerJS. The ISP would still know traffic, but that’s it.
  • Found this nice article in Communications of the ACM: Schema.org: Evolution of Structured Data on the Web. Nice overview. Very current.
  • The Big List of Naughty Strings
  • Time to combine everything
    • Optional generation of Providers and queries – default is to load them from the DB
    • Run queries from the DB
      • Show the number available and allow a request – done
      • Iterating over the queries and pages. Need to create, append and persist a rating Done
      • Named queries for
        • Queries that have the lowest number of results.ratings – done-ish. Currently it looks for -1 as a flag. Should also look for queries that have unrated results.
        • Queries associated with ‘bad’ providers
        • Queries associated with ‘good’ providers
      • Connect to DB remotely
    • Wrap the app (done, with Launch4j. Very nice!) and test it on the other laptop. Note, it doesn’t have enough disk to install java on. That will have to wait.
    • Packing up the laptop. Debating bringing multi monitor support. I’ll have the other laptop…
    • Gratuitous screenshot: SwingFlashback

Phil 2.8.16

7:00 – 5:00 VTX

  • My 401k still isn’t being done right. Sheesh.
  • More Publius: A robust, tamper-evident, censorship-resistant web publishing system
    • Very good introduction, then it dives into the weeds of how the system was implemented and and the cryptologic challenges. Good stuff, and should be addressed. It does imply that the information stored in my system could be encrypted and sharded as an additional layer of protection agains malicious editing. Since in this case, text can have annotations pointing to it but the source should be archival.
    • I think I also need to set up a new doc db of news items that I can use to make the story more readable.
      • Stories of people fooled by misinformation
      • Stories of people damaged by lack of anonymity
      • Stories about citizen journalism
      • Stories about computational journalism
      • Something about CSCW, Wikipedia maybe?
    • Anderson’s Eternity Service?
  • Need to make the ProviderObject persistent. Done
  • Need a rating object – date , who, the rating, anything else? Done-ish
  • Need to make a quick & dirty swing app for people to use – started. Once that’s working, then build the rating object that it will create
  • Need to connect to a remote DB
    • Will also need summary statistics and charts to see how queries do.
    • Will also need to store the good (“match” and “flaggable”) pages for later training.
  • Should make the app stand-alone-ish Jsmooth?
  • Discussion with Mike G., Heath, Bob H., and Theresa on how to integrate current NLP/NER

Phil 2.5.16

6:45 – 4:15 VTX

  • Change the JsonLoaded class to only look at declared fields – done
  • Register for Periscope Charts -done. Callback on Monday?
  • Working on parsing the query result.
    • Had to set the charset to UTF-8. Huh.
    • Can we pull back items by cacheId? Then we don’t need to load the primary store with internet info.
    • Had a STUPID mistake in getting JPA set up. Had all the annotations pointing at each other, but forgot when creating the result objects that I had to pass the ‘parent’ query object in to get the mapping. Sigh.
    • Adding a dirt-simple rating scheme
      • Java app iterates over all the urls returned and the user can pick from:
        1 - not appropriate at all
        2 - medical and or legal
        3 - Correct person
        4 - Correct person with flaggable

        The Java app then either opens the page or downloads and opens the file with the default application.

      • The user picks the value, the result object persists with the rating and we move on to the next item. Right now the DB is on my local machine, but if we made it networkable everyone could rate a few pages. Most of the results should only take a few seconds to evaluate.
  • I have the Google/db code running in one sandbox and the user eval running in another. Monday I’ll integrate them.

Phil 2.4.16

7:00 – 4:00 VTX

  • The way to handle multidimensional (human) ranking of documents (i.e. web pages) is to take the dimensions and and webpages and put them on a matrix? Each page has a greater or lesser score on that dimension. Then apply page rank. Tweak weights until pages order the way we think they should
  • Does “authority” mean quality? predicting expert quality ratings of Web documents
  • LandScan (Oak Ridge Labs)
  • Uppsala Conflict Data Program Geo-referenced Event Dataset
  • Nils Weidmann Dataverse (University of Konstanz)
  • Continuing On the Accuracy of Media-based Conflict Event Data. Done. Wow. And look at all the databases ^^^ !
  • Microsoft bot API
  • Back to GoogleHacking
    • Added ‘CredEngine1’ as BASELINE search engine
    • Looks like we blew through our limits. Using my key. Verified that the BASELINE search runs. That does mean that the current 4 queries factor out to 24 searches (6 search engines * 4 queries)
    • Building search persistent object
    • Building result item object. Actually, building a JasonLoadable base class since this trick is going to be used for the query items and info object
    • Need a result info object that stores the meta information.
    • Just stumbled across a GCS twitter search. Neat.
    • Hitting the CSE and getting results. Tomorrow I’ll finish of the classes that will persist the search results. I’ve got a buffered search result to use instead of hitting google. Although it will still need to pull down the document referenced in the result. I wonder how Jsoup handles pdf and Word documents?

Phil 2.3.16

7:00 – 3:00 VTX

  • Just discovered Publius –  a Web publishing system that is highly resistant to censorship and provides publishers with a high degree of anonymity. No longer active, but produced a paper.
  • Continuing On the Accuracy of Media-based Conflict Event Data. Currently starting Matching Media-based Conflict Reports with Military Records
  • Back to Googlehacking
    • Since I’ve got the provider JSON, setting up objects that I can use for more in-depth parsing. Thinking that this could be an example of ‘code’ in the dictionary. A work can be an object that knows how to look through a section of text to see if it can find itself.
    • I think running several dictionaries over a document could be interesting. For example, using a medical and a legal dictionary on a document would let the system infer malpractice as opposed to a document on foreign aid.
    • Generating the right queries and they work in the browser:
      "Ram Singh"
      	ALL_GOV(sanctions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+sanctions
      	ALL_GOV(criminal): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+criminal
      	ALL_GOV(malpractice): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+malpractice
      	ALL_GOV(board actions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+board+actions
      	ALL_US(sanctions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:9qwxkhnqoi0&q=%22Ram+Singh%22+VA+sanctions
      	ALL_US(criminal): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:9qwxkhnqoi0&q=%22Ram+Singh%22+VA+criminal
      	ALL_US(malpractice): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:9qwxkhnqoi0&q=%22Ram+Singh%22+VA+malpractice
      	ALL_US(board actions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:9qwxkhnqoi0&q=%22Ram+Singh%22+VA+board+actions
      	ALL_ORG(sanctions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:ux1lfnmx3ou&q=%22Ram+Singh%22+VA+sanctions
      	ALL_ORG(criminal): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:ux1lfnmx3ou&q=%22Ram+Singh%22+VA+criminal
      	ALL_ORG(malpractice): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:ux1lfnmx3ou&q=%22Ram+Singh%22+VA+malpractice
      	ALL_ORG(board actions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:ux1lfnmx3ou&q=%22Ram+Singh%22+VA+board+actions
      	RESTRICTED_COM(sanctions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:swl1wknfxia&q=%22Ram+Singh%22+VA+sanctions
      	RESTRICTED_COM(criminal): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:swl1wknfxia&q=%22Ram+Singh%22+VA+criminal
      	RESTRICTED_COM(malpractice): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:swl1wknfxia&q=%22Ram+Singh%22+VA+malpractice
      	RESTRICTED_COM(board actions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:swl1wknfxia&q=%22Ram+Singh%22+VA+board+actions
      	ALL_EDU(sanctions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+sanctions
      	ALL_EDU(criminal): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+criminal
      	ALL_EDU(malpractice): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+malpractice
      	ALL_EDU(board actions): https://www.googleapis.com/customsearch/v1?key=AIzaSyAj6wa-zWuNWXrjeJ4FteuBMKj92mRP4vo&cx=017379340413921634422:lqt7ih7tgci&q=%22Ram+Singh%22+VA+board+actions
  • So the next thing is to start running these queries and looking at the results to see if there are patterns. And I would be further along, but IntelliJ choked when I tried to add JPA. After flailing for a while I just gave up, created a new project, copied all the lib src and persistence directories over, updated the structure, and it all works. Grumble grumble.

Phil 1.29.16

7:00 – 3:30 VTX

Phil 1.28.16

5:30 – 3:30 VTX

  • Continuing The Hybrid Representation Model for Web Document Classification. Good stuff, well written. This paper (An Efficient Algorithm for Discovering Frequent Subgraphs) may be good for recognizing patterns between stories. Possibly also images.
  • Useful page for set symbols that I can never remember: http://www.rapidtables.com/math/symbols/Set_Symbols.htm
  • Finally discovered why the RdfStatementNodes aren’t assembling properly. There is no root statement… Fixed! We can now go from:
    <rdf:RDF
      xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
      xmlns:vCard='http://www.w3.org/2001/vcard-rdf/3.0#'
       >
    
      <rdf:Description rdf:about="http://somewhere/JohnSmith/">
        <vCard:FN>John Smith</vCard:FN>
        <vCard:N rdf:parseType="Resource">
       <vCard:Family>Smith</vCard:Family>
       <vCard:Given>John</vCard:Given>
        </vCard:N>
      </rdf:Description>
    
      <rdf:Description rdf:about="http://somewhere/RebeccaSmith/">
        <vCard:FN>Becky Smith</vCard:FN>
        <vCard:N rdf:parseType="Resource">
       <vCard:Family>Smith</vCard:Family>
       <vCard:Given>Rebecca</vCard:Given>
        </vCard:N>
      </rdf:Description>
    
      <rdf:Description rdf:about="http://somewhere/SarahJones/">
        <vCard:FN>Sarah Jones</vCard:FN>
        <vCard:N rdf:parseType="Resource">
       <vCard:Family>Jones</vCard:Family>
       <vCard:Given>Sarah</vCard:Given>
        </vCard:N>
      </rdf:Description>
    
      <rdf:Description rdf:about="http://somewhere/MattJones/">
        <vCard:FN>Matt Jones</vCard:FN>
        <vCard:N
       vCard:Family="Jones"
       vCard:Given="Matthew"/>
      </rdf:Description>
    
    </rdf:RDF>

    to this:

    [1]: http://somewhere/SarahJones/
    --[5] Subject: http://somewhere/SarahJones/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#FN, Object Literal:  "Sarah Jones"
    --[4] Subject: http://somewhere/SarahJones/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#N, Object(b81a776:1528928f544:-7ffd)
    ----[6] Subject: b81a776:1528928f544:-7ffd, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Given, Object Literal:  "Sarah"
    ----[7] Subject: b81a776:1528928f544:-7ffd, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Family, Object Literal:  "Jones"
    [3]: http://somewhere/MattJones/
    --[15] Subject: http://somewhere/MattJones/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#FN, Object Literal:  "Matt Jones"
    --[14] Subject: http://somewhere/MattJones/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#N, Object(b81a776:1528928f544:-7ffc)
    ----[11] Subject: b81a776:1528928f544:-7ffc, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Family, Object Literal:  "Jones"
    ----[10] Subject: b81a776:1528928f544:-7ffc, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Given, Object Literal:  "Matthew"
    [0]: http://somewhere/RebeccaSmith/
    --[3] Subject: http://somewhere/RebeccaSmith/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#FN, Object Literal:  "Becky Smith"
    --[2] Subject: http://somewhere/RebeccaSmith/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#N, Object(b81a776:1528928f544:-7ffe)
    ----[9] Subject: b81a776:1528928f544:-7ffe, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Family, Object Literal:  "Smith"
    ----[8] Subject: b81a776:1528928f544:-7ffe, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Given, Object Literal:  "Rebecca"
    [2]: http://somewhere/JohnSmith/
    --[12] Subject: http://somewhere/JohnSmith/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#N, Object(b81a776:1528928f544:-7fff)
    ----[1] Subject: b81a776:1528928f544:-7fff, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Family, Object Literal:  "Smith"
    ----[0] Subject: b81a776:1528928f544:-7fff, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#Given, Object Literal:  "John"
    --[13] Subject: http://somewhere/JohnSmith/, Predicate: http://www.w3.org/2001/vcard-rdf/3.0#FN, Object Literal:  "John Smith"
  • Some thoughts about information retrieval using graphs
  • Sent a note to Theresa asking for people to do manual flag extraction

Phil 1.27.16

7:00 – 4:00VTX

Phil 1.26.16

7:00 – 3:00 VTX

  • Finished the Crowdseeding paper. I was checking out the authors, and went to Macartan Humphreys’ website. He’s been doing interesting work, and he’s up in NYC at Colombia, so it would be possible to visit. Anyway, there is one paper that looks very interesting: Mixing Methods: A Bayesian Approach. It’s about inferring information from quantitative and qualitative sources. Anyway, it sounds related, both to how I’m putting together my proposal and how the overall system should(?) work.
  • Reviewing a paper. Don’t forget to mention other analytic systems like Palantir Gotham
  • On to Theme-based Retrieval of Web News. And in looking at papers that cite this, found The Hybrid Representation Model for Web Document Classification. Not too impressed with the former. The latter looks like it contains some good overview in the previous works section. One of the authors: Mark Last (lots of data discovery in large data sets)
  • Downloading new IntelliJ. Ok, back to normal and the tutorial.
    • Huh. Tried loading the (compact) “N-TRIPLES” format, which barfed, even though Jena wrote out the file. The (pretty) “RDF/XML-ABBREV” works for read and write though. Maybe I’m using the wrong read() method? Pretty is good for now anyway. The goal is to have a human-readable / RDF format anyway.
    • Can do some primitive search and navigation-like behavior, but not getting where I want to go. For example, it’s possible to list all the resources:
      ResIterator iter = model.listResourcesWithProperty(prop);
      while(iter.hasNext()){
          Resource r = iter.nextResource();
          StmtIterator iter = resource.listProperties(prop);
          while(iter.hasNext()){
              System.out.println("\t"+iter.nextStatement().getObject().toString());
          }
      }
    • But getting the parent of any of those resources is not supported. It looks like this requires using the Jena Ontology API, so on to the next tutorial…
    • Got Gregg’s simpleCredentials.owl file and was able to parse. Now I need to unpack it and create a dictionary.
    • Finished with the Jena Ontology API . No useful navigation, so very disappointing. Going to take the model.listStatements and see if I can assemble a tree (with relationships?) for the dictionary taxonomy conversion tomorrow.

Phil 1.22.16

6:45 – 2:15 VTX

  • Timesheet day? Nope. Next week.
  • Ok, now that I think I understand Laplace Transforms and why they matter, I think I can get back to Calibrating Noise to Sensitivity in Private Data Analysis. Ok, kinda hit the wall on the math on this one. These aren’t formulas that I would be using at this point in the research. It’s nice to know that they’re here, and can probably help me determine the amount of noise that would be needed in calculating the biometric projection (which inherently removes information/adds noise).
  • Starting on Security-Control  Methods  for  Statistical  Databases: A  Comparative  Study
  • Article on useful AI chatbots. Sent SemanticMachines an email asking about their chatbot technology.
  • Got the name disambiguation working pretty well. Here’s the text:
    • – RateMDs Name Signup | Login Claim Doctor Profile | Claim Doctor Profile See what’s new! Account User Dashboard [[ doctor.name ]] Claim Doctor Profile Reports Admin Sales Admin: Doctor Logout Toggle navigation Menu Find A Doctor Find A Facility Health Library Health Blog Health Forum Doctors › Columbia › Family Doctor / G.P. › Unfollow Follow Share this Doctor: twitter facebook Dr. Robert S. Goodwin Family Doctor / G.P. 29 reviews #9 of 70 Family Doctors / G.P.s in Columbia, Maryland Male Dr Goodwin & Associates Unavailable View Map & ……………plus a lot more ………………..Hospitalizes Infant In Spain Wellness How Did Google Cardboard Save This baby’s life? Health 7 Amazing Stretches To Do On a Plane Follow Us You may also like Dr. Charles L. Crist Family Doctor / G.P. 24 reviews Top Family Doctors / G.P.s in Columbia, MD Dr. Mark V. Sivieri 21 reviews #1 of 70 Dr. Susan B. Brown Schoenfeld 8 reviews #2 of 70 Dr. Nj Udochi 4 reviews #3 of 70 Dr. Sarah L. Connor 4 reviews #4 of 70 Dr. Kisa S. Crosse 7 reviews #5 of 70 Sign up for our newsletter and get the latest health news and tips. Name Email Address Subscribe About RateMDs About Press Contact FAQ Advertise Privacy & Terms Claim Doctor Profile Top Specialties Family G.P. Gynecologist/OBGYN Dentist Orthopedics/Sports Cosmetic Surgeon Dermatologist View all specialties > Top Local Doctors New York Chicago Houston Los Angeles Boston Toronto Philadelphia Follow Us Facebook Twitter Google+ ©2004-2016 RateMDs Inc. – The original and largest doctor rating site.
    • Here’s the list of extracted people:
      PERSON: Robert S. Goodwin
      PERSON: Robert S. Goodwin
      PERSON: L. Crist
      PERSON: Goodwin
      PERSON: Goodwin
      PERSON: Goodwin
      PERSON: Goodwin
      PERSON: Goodwin
      PERSON: G
      PERSON: Robert S. Goodwin
      PERSON: Goodwin
      PERSON: Goodwin
      PERSON: Goodwin
      PERSON: Ajay Kumar
      PERSON: Charles L. Crist
      PERSON: Mark V. Sivieri
      PERSON: B. Brown Schoenfeld
      PERSON: L. Connor
      PERSON: S. Crosse
    • And here some tests against that set (low scores are better. Information Distance):
      Best match for Robert S. Goodwin is PERSON: Robert S. Goodwin (score = 0.0)
      Best match for Goodwin Robert S. is PERSON: Robert S. Goodwin (score = 0.0)
      Best match for Dr. Goodwin is PERSON: Robert S. Goodwin (score = 1.8)
      Best match for Bob Goodwin is PERSON: Robert S. Goodwin (score = 2.0)
      Best match for Rob Goodman is PERSON: Robert S. Goodwin (score = 2.6)
  • So I can cluster together similar (and misspelled) words, and SNLP hands me information about DATE, DURATION, PERSON, ORGANIZATION, LOCATION
  • Don’t know why I didn’t see this before – this is the page for the NER with associated papers. That’s kind as close to a guide as I think you’ll find in this system

Phil 1.21.16

7:00 – 4:00 VTX

  • Inverse Laplace examples
  • Dirac delta function
  • Useful link of the day: Firefox user agent strings
  • Design Overview presentation.
  • Working on (simple!) name disambiguation
    • Building word chains of sequential tokens that are entities (PERSON and ORGANIZATION) Done
    • Given a name, split by spaces and get best match on last name, then look ahead one or two words for best match on first name. If both sets are triples, then check the middle. Wound up iterating over all the elements looking for the best match. This does let things like reverse order work. Not sure if it’s best
    • Checks need to look for initials for first and middle name in source and target. Still working on this one.
    • Results (lower is better):
      ------------------------------
      Robert S. Goodwin
      PERSON: Robert S. Goodwin score = 0.0
      PERSON: Robert S. Goodwin score = 0.0
      PERSON: L. Crist score = 6.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: G score = 2.0
      PERSON: Robert S. Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Ajay Kumar score = 9.0
      PERSON: Charles L. Crist score = 13.0
      PERSON: Mark V. Sivieri score = 10.0
      PERSON: B. Brown Schoenfeld score = 13.0
      PERSON: L. Connor score = 6.0
      PERSON: S. Crosse score = 6.0
      
      ------------------------------
      Goodwin Robert S.
      PERSON: Robert S. Goodwin score = 0.0
      PERSON: Robert S. Goodwin score = 0.0
      PERSON: L. Crist score = 6.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: G score = 2.0
      PERSON: Robert S. Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Goodwin score = 0.0
      PERSON: Ajay Kumar score = 9.0
      PERSON: Charles L. Crist score = 13.0
      PERSON: Mark V. Sivieri score = 10.0
      PERSON: B. Brown Schoenfeld score = 13.0
      PERSON: L. Connor score = 6.0
      PERSON: S. Crosse score = 6.0

Phil 1.20.16

7:00 – 5:30 VTX