Guo, Xuyang (2018-08). A Study of Interwell Interference and Well Performance in Unconventional Reservoirs Based on Coupled Flow and Geomechanics Modeling with Improved Computational Efficiency. Doctoral Dissertation.
Thesis
Completion quality of tightly spaced horizontal wells in unconventional reservoirs is important for hydrocarbon recovery efficiency. Parent well production usually leads to heterogeneous stress evolution around parent wells and at infill well locations, which affects hydraulic fracture growth along infill wells. Recent field observations indicate that infill well completions lead to frac hits and production interference between parent and infill wells. Therefore, it is important to characterize the heterogeneous interwell stress/pressure evolutions and hydraulic fracture networks. This work presents a reservoir-geomechanics-fracturing modeling workflow and its implementation in unconventional reservoirs for the characterization of interwell stress and pressure evolutions and for the modeling of interwell hydraulic fracture geometry. An in-house finite element model coupling fluid flow and geomechanics is first introduced and used to characterize production-induced stress and pressure changes in the reservoir. Then, an in-house complex fracture propagation model coupling fracture mechanics and wellbore/fracture fluid flow is used for the simulation of hydraulic fractures along infill wells. A parallel solver is also implemented in a reservoir geomechanics simulator in a separate study to investigate the potential of improving computational efficiency. Results show that differential stress (DS), parent well fracture geometry, legacy production time, bottomhole pressure (BHP) for legacy production, and perforation cluster location are key parameters affecting interwell fracture geometry and the occurrence of frac hits. In general, transverse infill well fractures are obtained in scenarios with large DS and small legacy producing time/BHP. Non-uniform parent well fracture geometry leads to frac hits in certain cases, while the assumption of uniform parent well fracture half-lengths in the numerical model could not capture the phenomenon of frac hits. Perforation cluster locations along infill wells do not play an important role in determining whether an infill well hydraulic fracture is transverse, while they are important for the occurrence of frac hits. In addition, the implementation of a parallel solver, PETSc, in a fortran-based simulator indicates that an overall speedup of 14 can be achieved for simulations with one million grid blocks. This result provides a reference for improving computational efficiency for geomechanical simulation involving large matrices using finite element methods (FEM).
Completion quality of tightly spaced horizontal wells in unconventional reservoirs is important for hydrocarbon recovery efficiency. Parent well production usually leads to heterogeneous stress evolution around parent wells and at infill well locations, which affects hydraulic fracture growth along infill wells. Recent field observations indicate that infill well completions lead to frac hits and production interference between parent and infill wells. Therefore, it is important to characterize the heterogeneous interwell stress/pressure evolutions and hydraulic fracture networks. This work presents a reservoir-geomechanics-fracturing modeling workflow and its implementation in unconventional reservoirs for the characterization of interwell stress and pressure evolutions and for the modeling of interwell hydraulic fracture geometry. An in-house finite element model coupling fluid flow and geomechanics is first introduced and used to characterize production-induced stress and pressure changes in the reservoir. Then, an in-house complex fracture propagation model coupling fracture mechanics and wellbore/fracture fluid flow is used for the simulation of hydraulic fractures along infill wells. A parallel solver is also implemented in a reservoir geomechanics simulator in a separate study to investigate the potential of improving computational efficiency. Results show that differential stress (DS), parent well fracture geometry, legacy production time, bottomhole pressure (BHP) for legacy production, and perforation cluster location are key parameters affecting interwell fracture geometry and the occurrence of
frac hits. In general, transverse infill well fractures are obtained in scenarios with large DS and small legacy producing time/BHP. Non-uniform parent well fracture geometry leads to frac hits in certain cases, while the assumption of uniform parent well fracture half-lengths in the numerical model could not capture the phenomenon of frac hits. Perforation cluster locations along infill wells do not play an important role in determining whether an infill well hydraulic fracture is transverse, while they are important for the occurrence of frac hits. In addition, the implementation of a parallel solver, PETSc, in a fortran-based simulator indicates that an overall speedup of 14 can be achieved for simulations with one million grid blocks. This result provides a reference for improving computational efficiency for geomechanical simulation involving large matrices using finite element methods (FEM).