Category Archives: TODO

Phil 11.12.18

7:00 – 7:00 ASRC PhD

  • Call Tim Ellis – done
  • Tags – done
  • Bills – nope, including MD EV paperwork -done
  • Get oil change kit from Bob’s – closed
  • Fika – done
  • Finish Similar neural responses predict friendship – Done!
  • Discrete hierarchical organization of social group sizes
    • The ‘social brain hypothesis’ for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3–5, 9–15, 30–45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.
  • Work on Antonio’s paper – good progress
  • Aaron added a lot of content to Belief Spaces, and we got together to discuss. Probably the best thing to come out of the discussion was an approach to the dungeons that at one end is an acyclic, directed, linear graph of connected nodes. The map will be a line, with any dilemma discussions connected with the particular nodes. At the other end is an open environment. In between are various open and closed graphs that we can classify with some level of complexity.
  • One of the things that might be interesting to examine is the distance between nodes, and how that affects behavior
  • Need to mention that D&D are among the oldest “digital residents” of the internet, with decades-old artifacts.

Phil 11.7.18

Let the House Subcommittee investigations begin! Also, better redistricting?

7:00 – 5:00 ASRC PhD/BD

  • Rather than Deep Learning with Keras, I’m starting on Grokking Deep Learning. I need better grounding
    • Installed Jupyter
  • After lunch, send follow-up emails to the technical POCs. This will be the basis for the white paper: Tentative findings/implications for design. Modify it on the blog page first and then use to create the LaTex doc. Make that one project, with different mains that share overlapping content.
  • Characterizing Online Public Discussions through Patterns of Participant Interactions
    • Public discussions on social media platforms are an intrinsic part of online information consumption. Characterizing the diverse range of discussions that can arise is crucial for these platforms, as they may seek to organize and curate them. This paper introduces a computational framework to characterize public discussions, relying on a representation that captures a broad set of social patterns which emerge from the interactions between interlocutors, comments and audience reactions. We apply our framework to study public discussions on Facebook at two complementary scales. First, we use it to predict the eventual trajectory of individual discussions, anticipating future antisocial actions (such as participants blocking each other) and forecasting a discussion’s growth. Second, we systematically analyze the variation of discussions across thousands of Facebook sub-communities, revealing subtle differences (and unexpected similarities) in how people interact when discussing online content. We further show that this variation is driven more by participant tendencies than by the content triggering these discussions.
  • More latent space flocking from Innovation Hub
    • You Share Everything With Your Bestie. Even Brain Waves.
      •  Scientists have found that the brains of close friends respond in remarkably similar ways as they view a series of short videos: the same ebbs and swells of attention and distraction, the same peaking of reward processing here, boredom alerts there. The neural response patterns evoked by the videos — on subjects as diverse as the dangers of college football, the behavior of water in outer space, and Liam Neeson trying his hand at improv comedy — proved so congruent among friends, compared to patterns seen among people who were not friends, that the researchers could predict the strength of two people’s social bond based on their brain scans alone.

    • Similar neural responses predict friendship
      • Human social networks are overwhelmingly homophilous: individuals tend to befriend others who are similar to them in terms of a range of physical attributes (e.g., age, gender). Do similarities among friends reflect deeper similarities in how we perceive, interpret, and respond to the world? To test whether friendship, and more generally, social network proximity, is associated with increased similarity of real-time mental responding, we used functional magnetic resonance imaging to scan subjects’ brains during free viewing of naturalistic movies. Here we show evidence for neural homophily: neural responses when viewing audiovisual movies are exceptionally similar among friends, and that similarity decreases with increasing distance in a real-world social network. These results suggest that we are exceptionally similar to our friends in how we perceive and respond to the world around us, which has implications for interpersonal influence and attraction.
    • Brain-to-Brain coupling: A mechanism for creating and sharing a social world
      • Cognition materializes in an interpersonal space. The emergence of complex behaviors requires the coordination of actions among individuals according to a shared set of rules. Despite the central role of other individuals in shaping our minds, most cognitive studies focus on processes that occur within a single individual. We call for a shift from a single-brain to a multi-brain frame of reference. We argue that in many cases the neural processes in one brain are coupled to the neural processes in another brain via the transmission of a signal through the environment. Brain-to-brain coupling constrains and simplifies the actions of each individual in a social network, leading to complex joint behaviors that could not have emerged in isolation.
  • Started reading Similar neural responses predict friendship

Phil 11.6.18

7:00 – 2:00 ASRC PhD/BD

  • Today’s big though: Maps are going top be easier than I thought. We’ve been doing  them for thousands of years with board games.
  • Worked with Aaron on slides, including finding fault detection using our technologies. There is quite a bit, with pioneering work from NASA
  • Uploaded documents – done
  • Called and left messages for Dr. Wilkins and Dr. Palazzolo. Need to send a follow-up email to Dr. Palazzolo and start on the short white papers
  • Leaving early to vote
  • The following two papers seem to be addressing edge stiffness
  • Model of the Information Shock Waves in Social Network Based on the Special Continuum Neural Network
    • The article proposes a special class of continuum neural network with varying activation thresholds and a specific neuronal interaction mechanism as a model of message distribution in social networks. Activation function for every neuron is fired as a decision of the specific systems of differential equations which describe the information distribution in the chain of the network graph. This class of models allows to take into account the specific mechanisms for transmitting messages, where individuals who, receiving a message, initially form their attitude towards it, and then decide on the further transmission of this message, provided that the corresponding potential of the interaction of two individuals exceeds a certain threshold level. The authors developed the original algorithm for calculating the time moments of message distribution in the corresponding chain, which comes to the solution of a series of Cauchy problems for systems of ordinary nonlinear differential equations.
  • A cost-effective algorithm for inferring the trust between two individuals in social networks
    • The popularity of social networks has significantly promoted online individual interaction in the society. In online individual interaction, trust plays a critical role. It is very important to infer the trust among individuals, especially for those who have not had direct contact previously in social networks. In this paper, a restricted traversal method is defined to identify the strong trust paths from the truster and the trustee. Then, these paths are aggregated to predict the trust rate between them. During the traversal on a social network, interest topics and topology features are comprehensively considered, where weighted interest topics are used to measure the semantic similarity between users. In addition, trust propagation ability of users is calculated to indicate micro topology information of the social network. In order to find the topk most trusted neighbors, two combination strategies for the above two factors are proposed in this paper. During trust inference, the traversal depth is constrained according to the heuristic rule based on the “small world” theory. Three versions of the trust rate inference algorithm are presented. The first algorithm merges interest topics and topology features into a hybrid measure for trusted neighbor selection. The other two algorithms consider these two factors in two different orders. For the purpose of performance analysis, experiments are conducted on a public and widely-used data set. The results show that our algorithms outperform the state-of-the-art algorithms in effectiveness. In the meantime, the efficiency of our algorithms is better than or comparable to those algorithms.
  • Back to LSTMs. Made a numeric version of “all work and no play in the jack_torrance generatorAWANPMJADB
  • Reading in and writing out weight files. The predictions seems to be working well, but I have no insight into the arguments that go into the LSTM model. Going to revisit the Deep Learning with Keras book

Phil 11.5.18

7:00- 4:30 ASRC PhD

  • Make integer generator by scaling and shifting the floating point generator to the desired values and then truncating. It would be fun to read in a token list and have the waveform be words
    • Done with the int waveform. This is an integer waveform of the function
      math.sin(xx)*math.sin(xx/2.0)*math.cos(xx/4.0)

      set on a range from 0 – 100:

    •  IntWaves
    • And here’s the unmodified floating-point version of the same function:
    • FloatWaves
    • Here’s the same function as words:
      #confg: {"function":math.sin(xx)*math.sin(xx/2.0)*math.cos(xx/4.0), "rows":100, "sequence_length":20, "step":1, "delta":0.4, "type":"floating_point"}
      routed, traps, thrashing, fifteen, ultimately, dealt, anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, 
      traps, thrashing, fifteen, ultimately, dealt, anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, 
      thrashing, fifteen, ultimately, dealt, anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, 
      fifteen, ultimately, dealt, anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, 
      ultimately, dealt, anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, 
      dealt, anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, 
      anyway, apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', 
      apprehensions, boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, 
      boats, job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, 
      job, descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, 
      descended, tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, 
      tongue, dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, 
      dripping, adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, 
      adoration, boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, 
      boats, routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, 
      routed, routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, 
      routed, strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, 
      strokes, cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, bare, 
      cheerful, charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, bare, count, 
      charleses, travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, bare, count, descended, 
      travellers, unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, bare, count, descended, dashed, 
      unsuspected, malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, bare, count, descended, dashed, ears, 
      malingerer, respect, aback, vair', wraith, bare, creek, descended, assortment, flashed, reputation, guarded, tempers, partnership, bare, count, descended, dashed, ears, q, 
      

       

  • Started LSTMs again, using this example using Alice in Wonderland
  • Aaron and T in all day discussions with Kevin about NASA/NOAA. Dropped in a few times. NASA is airgapped, but you can bring code in and out. Bringing code in requires a review.
  • Call the Army BAA people. We need white paper templates and a response for Dr. Palazzolo.
  • Finish and submit 810 reviews tonight. Done.
  • This is important for the DARPA and Army BAAs: The geographic embedding of online echo chambers: Evidence from the Brexit campaign
    • This study explores the geographic dependencies of echo-chamber communication on Twitter during the Brexit campaign. We review the evidence positing that online interactions lead to filter bubbles to test whether echo chambers are restricted to online patterns of interaction or are associated with physical, in-person interaction. We identify the location of users, estimate their partisan affiliation, and finally calculate the distance between sender and receiver of @-mentions and retweets. We show that polarized online echo-chambers map onto geographically situated social networks. More specifically, our results reveal that echo chambers in the Leave campaign are associated with geographic proximity and that the reverse relationship holds true for the Remain campaign. The study concludes with a discussion of primary and secondary effects arising from the interaction between existing physical ties and online interactions and argues that the collapsing of distances brought by internet technologies may foreground the role of geography within one’s social network.
  • Also important:
    • How to Write a Successful Level I DHAG Proposal
      • The idea behind a Level I project is that it can be “high risk/high reward.” Put another way, we are looking for interesting, innovative, experimental, new ideas, even if they have a high potential to fail. It’s an opportunity to figure things out so you are better prepared to tackle a big project. Because of the relatively low dollar amount (no more than $50K), we are willing to take on more risk for an idea with lots of potential. By contrast, at the Level II and especially at the Level III, there is a much lower risk tolerance; the peer reviewers expect that you’ve already completed an earlier start-up or prototyping phase and will want you to convince them your project is ready to succeed.
  • Tracing a Meme From the Internet’s Fringe to a Republican Slogan
    • This feedback loop is how #JobsNotMobs came to be. In less than two weeks, the three-word phrase expanded from corners of the right-wing internet onto some of the most prominent political stages in the country, days before the midterm elections.
  • Effectiveness of gaming for communicating and teaching climate change
    • Games are increasingly proposed as an innovative way to convey scientific insights on the climate-economic system to students, non-experts, and the wider public. Yet, it is not clear if games can meet such expectations. We present quantitative evidence on the effectiveness of a simulation game for communicating and teaching international climate politics. We use a sample of over 200 students from Germany playing the simulation game KEEP COOL. We combine pre- and postgame surveys on climate politics with data on individual in-game decisions. Our key findings are that gaming increases the sense of personal responsibility, the confidence in politics for climate change mitigation, and makes more optimistic about international cooperation in climate politics. Furthermore, players that do cooperate less in the game become more optimistic about international cooperation but less confident about politics. These results are relevant for the design of future games, showing that effective climate games do not require climate-friendly in-game behavior as a winning condition. We conclude that simulation games can facilitate experiential learning about the difficulties of international climate politics and thereby complement both conventional communication and teaching methods.
    • This reinforces the my recent thinking that games may be a fourth, distinct form of human sociocultural communication

Phil 10.31.18

7:00 – ASRC PhD

  • Read this carefully today: Introducing AdaNet: Fast and Flexible AutoML with Learning Guarantees
    • Today, we’re excited to share AdaNet, a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on our recent reinforcement learning and evolutionary-based AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture, but also for learning to ensemble to obtain even better models.
    • What about data from simulation?
    • Github repo
    • This looks like it’s based deeply the cloud AI and Machine Learning products, including cloud-based hyperparameter tuning.
    • Time series prediction is here as well, though treated in a more BigQuery manner
      • In this blog post we show how to build a forecast-generating model using TensorFlow’s DNNRegressor class. The objective of the model is the following: Given FX rates in the last 10 minutes, predict FX rate one minute later.
    • Text generation:
      • Cloud poetry: training and hyperparameter tuning custom text models on Cloud ML Engine
        • Let’s say we want to train a machine learning model to complete poems. Given one line of verse, the model should generate the next line. This is a hard problem—poetry is a sophisticated form of composition and wordplay. It seems harder than translation because there is no one-to-one relationship between the input (first line of a poem) and the output (the second line of the poem). It is somewhat similar to a model that provides answers to questions, except that we’re asking the model to be a lot more creative.
      • Codelab: Google Developers Codelabs provide a guided, tutorial, hands-on coding experience. Most codelabs will step you through the process of building a small application, or adding a new feature to an existing application. They cover a wide range of topics such as Android Wear, Google Compute Engine, Project Tango, and Google APIs on iOS.
        Codelab tools on GitHub

  • Add the Range and Length section in my notes to the DARPA measurement section. Done. I need to start putting together the dissertation using these parts
  • Read Open Source, Open Science, and the Replication Crisis in HCI. Broadly, it seems true, but trying to piggyback on GitHub seems like a shallow solution that repurposes something for coding – an ephemeral activity, to science, which is archival for a reason. Thought needs to be given to an integrated (collection, raw data, cleaned data, analysis, raw results, paper (with reviews?), slides, and possibly a recording of the talk with questions. What would it take to make this work across all science, from critical ethnographies to particle physics? How will it be accessible in 100 years? 500? 1,000? This is very much an HCI problem. It is about designing a useful socio-cultural interface. Some really good questions would be “how do we use our HCI tools to solve this problem?”, and, “does this point out the need for new/different tools?”.
  • NASA AIMS meeting. Demo in 2 weeks. AIMS is “time series prediction”, A2P is “unstructured data”. Proove that we can actually do ML, as opposed to saying things.
    • How about cross-point correlation? Could show in a sim?
    • Meeting on Friday with a package
    • We’ve solved A, here’s the vision for B – Z and a roadmap. JPSS is a near-term customer (JPSS Data)
    • Getting actionable intelligence from the system logs
    • Application portfolios for machine learning
    • Umbrella of capabilities for Rich Burns
    • New architectural framework for TTNC
    • Complete situational awareness. Access to commands and sensor streams
    • Software Engineering Division/Code 580
    • A2P as a toolbox, but needs to have NASA-relevant analytic capabilities
    • GMSEC overview

Phil 9.19.18

7:00 – 5:30 ASRC MKT

  • More iConf paper
  • GSS Meeting?
  • Meeting with Wayne? No, he’s out till Thursday
  • Pinged Don about Aaron Mannes. He’s OOO as well
  • Understanding the interplay between social and spatial behaviour
    • Laura Alessandretti
    • Sune Lehmann
    • Andrea Baronchelli
    • According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relationship between mobility and social behaviour by analysing trajectories and mobile phone interactions of 1000 individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation.
    • This looks to be a missing link paper that I can use to connect animal behavior in physical space and human behavior in belief space
  • A Sociology of Algorithms: High-Frequency Trading and the Shaping of Markets
    • Donald MacKenzie
      • My current research is on the sociology of markets, focusing on automated trading. I’ve worked in the past on topics ranging from the sociology of nuclear weapons to the meaning of proof in the context of computer systems critical to safety or security.
    • Computer algorithms are playing an ever more important role in financial markets. This paper proposes and exemplifies a sociology of algorithms that is (i) historical, in that it demonstrates path-dependence in the development of automated markets; (ii) ecological (in Abbott’s sense), in that it shows how automated high-frequency trading (HFT) is both itself an ecology and also is shaped by other linked ecologies (especially those of trading venues and of regulation); and (iii) “Zelizerian,” in that it highlights the importance of boundary work, especially of efforts to distinguish between (in effect) “good” and “bad” actors and algorithms. Empirically, the paper draws on interviews with 43 practitioners of HFT, and on a wider historical-sociology study (including interviews with a further 44 people) of the development of trading venues. The paper investigates the practices of HFT and analyses (in historical, ecological, and “Zelizerian” terms) how these differ in three different contexts (two types of share trading and foreign exchange).
  • A2P marketing meeting in Greenbelt
  • Long discussion on networks and the stiffness of links

Phil 9.17.18

7:00 – ASRC MKT

  • Dan Ariely Professor of psychology and behavioral economics, Duke University (Scholar)
    • Controlling the Information Flow: Effects on Consumers’ Decision Making and Preferences
      • One of the main objectives facing marketers is to present consumers with information on which to base their decisions. In doing so, marketers have to select the type of information system they want to utilize in order to deliver the most appropriate information to their consumers. One of the most interesting and distinguishing dimensions of such information systems is the level of control the consumer has over the information system. The current work presents and tests a general model for understanding the advantages and disadvantages of information control on consumers’ decision quality, memory, knowledge, and confidence. The results show that controlling the information flow can help consumers better match their preferences, have better memory and knowledge about the domain they are examining, and be more confident in their judgments. However, it is also shown that controlling the information flow creates demands on processing resources and therefore under some circumstances can have detrimental effects on consumers’ ability to utilize information. The article concludes with a summary of the findings, discussion of their application for electronic commerce, and suggestions for future research avenues.
      • This may be a good example of work that relates to socio-cultural interfaces.
  • Democracy’s Wisdom: An Aristotelian Middle Way for Collective Judgment
    • Josiah Ober (Scholar)
    •  The Greeks had experts determine choices, and the public vote between the expert choices
    • A satisfactory model of decision-making in an epistemic democracy must respect democratic values, while advancing citizens’ interests, by taking account of relevant knowledge about the world. Analysis of passages in Aristotle and legislative process in classical Athens points to a “middle way” between independent-guess aggregation and deliberation: an epistemic approach to decision-making that offers a satisfactory model of collective judgment that is both time-sensitive and capable of setting agendas endogenously. By aggregating expertise across multiple domains, Relevant Expertise Aggregation (REA) enables a body of minimally competent voters to make superior choices among multiple options, on matters of common interest. REA differs from a standard Condorcet jury in combining deliberation with voting based on judgments about the reputations and arguments of domain-experts.
  • NESTA Center for Collective Intelligence Design
    • The Centre for Collective Intelligence Design will explore how human and machine intelligence can be combined to make the most of our collective knowledge and develop innovative and effective solutions to social challenges.
    • Call for ideas (JuryRoom!)
      • Nesta is offering grants of up to £20,000 for projects that generate new knowledge on how to advance collective intelligence (combining human and machine intelligence) to solve social problems.
  • Synchronize gdrive, subversion
  • Finish abstract review
  • Organize iConf paper into something more coherent
    • Created folder for lit review
  • Start putting together notes on At Home in the Universe?
  • Ping folks from SASO
    • Graph Laplacian paper
    • Cycling stuff
  • Fika?
  • Meeting with Wayne?

Phil 4.12.18

7:00 – 5:00 ASRC MKT/BD

  • Downloaded my FB DB today. Honestly, the only thing that seems excessive is the contact information
  • Interactive Semantic Alignment Model: Social Influence and Local Transmission Bottleneck
    • Dariusz Kalociński
    • Marcin Mostowski
    • Nina Gierasimczuk
    • We provide a computational model of semantic alignment among communicating agents constrained by social and cognitive pressures. We use our model to analyze the effects of social stratification and a local transmission bottleneck on the coordination of meaning in isolated dyads. The analysis suggests that the traditional approach to learning—understood as inferring prescribed meaning from observations—can be viewed as a special case of semantic alignment, manifesting itself in the behaviour of socially imbalanced dyads put under mild pressure of a local transmission bottleneck. Other parametrizations of the model yield different long-term effects, including lack of convergence or convergence on simple meanings only.
  • Starting to get back to the JuryRoom app. I need a better way to get the data parts up and running. This tutorial seems to have a minimal piece that works with PHP. That may be for the best since this looks like a solo effort for the foreseeable future
  • Proposal
    • Cut implementation down to proof-of-concept?
    • We are keeping the ASRC format
    • Got Dr. Lee’s contribution
    • And a lot of writing and figuring out of things

Phil 12.12.17

7:00 – 3:30 ASRC MKT

  • Need to make sure that an amplified agent also has amplified influence in calculating velocity – Fixed
  • Towards the end of this video is an interview with Ian Couzin talking about how mass communication is disrupting our ability to flock ‘correctly’ due to the decoupling of distance and information
  • Write up fire stampede. Backups everywhere, one hole, antennas burn so the AI keeps trust in A* but loses awareness as the antennas burn: “The Los Angeles Police Department asked drivers to avoid navigation apps, which are steering users onto more open routes — in this case, streets in the neighborhoods that are on fire.” [LA Times] Also this slow motion version of the same thing: For the Good of Society — and Traffic! — Delete Your Map App
  • First self-driving car ‘race’ ends in a crash at the Buenos Aires Formula E ePrix; two cars enter, one car survives
  • Taking a closer look at Oscillator Models and Collective Motion (178 Citations) and Consensus and Cooperation in Networked Multi-Agent Systems (6,291 Citations)
  • Consensus and Cooperation in Networked Multi-Agent Systems
    • Reza Olfati-SaberAlex Fax, and Richard M. Murray
    • We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms (Abstract)
    • In networks of agents (or dynamic systems), “consensus” means to reach an agreement regarding a certain quantity of interest that depends on the state of all agents. A “consensus algorithm” (or protocol) is an interaction rule that specifies the information exchange between an agent and all of its (nearest) neighbors on the network (pp 215)
      • In my work, this is agreement on heading and velocity
    • Graph Laplacians are an important point of focus of this paper. It is worth mentioning that the second smallest eigenvalue of graph Laplacians called algebraic connectivity quantifies the speed of convergence of consensus algorithms. (pp 216)
    • More recently, there has been a tremendous surge of interest among researchers from various disciplines of engineering and science in problems related to multi-agent networked systems with close ties to consensus problems. This includes subjects such as consensus [26]–[32], collective behavior of flocks and swarms [19], [33]–[37], sensor fusion [38]–[40], random networks [41], [42], synchronization of coupled oscillators [42]–[46], algebraic connectivity of complex networks [47]–[49], asynchronous distributed algorithms [30], [50], formation control for multi-robot systems [51]–[59], optimization-based cooperative control [60]–[63], dynamic graphs [64]–[67], complexity of coordinated tasks [68]–[71], and consensus-based belief propagation in Bayesian networks [72], [73]. (pp 216)
      • That is a dense lit review. How did they order it thematically?
    • A byproduct of this framework is to demonstrate that seemingly different consensus algorithms in the literature [10], [12]–[15] are closely related. (pp 216)
    • To understand the role of cooperation in performing coordinated tasks, we need to distinguish between unconstrained and constrained consensus problems. An unconstrained consensus problem is simply the alignment problem in which it suffices that the state of all agents asymptotically be the same. In contrast, in distributed computation of a function f(z), the state of all agents has to asymptotically become equal to f(z), meaning that the consensus problem is constrained. We refer to this constrained consensus problem as the f-consensus problem. (pp 217)
      • Normal exploring/flocking/stampeding is unconstrained. Herding adds constraint, though it’s dynamic. The variables that have to be manipulated in the case of constraint to result in the same amount of consensus are probably what’s interesting here. Examples could be how ‘loud’ does the herder have to be? Also, how ‘primed’ does the population have to be to accept herding?
    • …cooperation can be informally interpreted as “giving consent to providing one’s state and following a common protocol that serves the group objective.” (pp 217)
    • Formal analysis of the behavior of systems that involve more than one type of agent is more complicated, particularly, in presence of adversarial agents in noncooperative games [79], [80]. (pp 217)
    • The reason matrix theory [81] is so widely used in analysis of consensus algorithms [10], [12], [13], [14], [15], [64] is primarily due to the structure of P in (4) and its connection to graphs. (pp 218)
    • The role of consensus algorithms in particle based flocking is for an agent to achieve velocity matching with respect to its neighbors. In [19], it is demonstrated that flocks are networks of dynamic systems with a dynamic topology. This topology is a proximity graph that depends on the state of all agents and is determined locally for each agent, i.e., the topology of flocks is a state dependent graph. The notion of state-dependent graphs was introduced by Mesbahi [64] in a context that is independent of flocking. (pp 218)
      • They leave out heading alignment here. Deliberate? Or is heading alignment just another variant on velocity
    • Consider a network of decision-making agents with dynamics ẋi = ui interested in reaching a consensus via local communication with their neighbors on a graph G = (V, E). By reaching a consensus, we mean asymptotically converging to a one-dimensional agreement space characterized by the following equation: x1 = x2 = … = x (pp 219)
    • A dynamic graph G(t) = (V, E(t)) is a graph in which the set of edges E(t) and the adjacency matrix A(t) are time-varying. Clearly, the set of neighbors Ni(t) of every agent in a dynamic graph is a time-varying set as well. Dynamic graphs are useful for describing the network topology of mobile sensor networks and flocks [19]. (pp 219)
    • GraphLaplacianGradientDescent(pp 220)
  • algebraic connectivity of a graph: The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue) of a graph G is the second-smallest eigenvalue of the Laplacian matrix of G.[1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph. The magnitude of this value reflects how well connected the overall graph is. It has been used in analysing the robustness and synchronizability of networks. (wikipedia) (pp 220)
  • According to Gershgorin theorem [81], all eigenvalues of L in the complex plane are located in a closed disk centered at delta + 0j with a radius of delta, the maximum degree of a graph (pp 220)
    • This is another measure that I can do of the nomad/flock/stampede structures combined with DBSCAN. Each agent knows what agents it is connected with, and we know how many agents there are. Each agent row should just have the number of agents it is connected to.
  • In many scenarios, networked systems can possess a dynamic topology that is time-varying due to node and link failures/creations, packet-loss [40], [98], asynchronous consensus [41], state-dependence [64], formation reconfiguration [53], evolution [96], and flocking [19], [99]. Networked systems with a dynamic topology are commonly known as switching networks. (pp 226)
  • Conclusion: A theoretical framework was provided for analysis of consensus algorithms for networked multi-agent systems with fixed or dynamic topology and directed information flow. The connections between consensus problems and several applications were discussed that include synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. The role of “cooperation” in distributed coordination of networked autonomous systems was clarified and the effects of lack of cooperation was demonstrated by an example. It was demonstrated that notions such as graph Laplacians, nonnegative stochasticmatrices, and algebraic connectivity of graphs and digraphs play an instrumental role in analysis of consensus algorithms. We proved that algorithms introduced by Jadbabaie et al. and Fax and Murray are identical for graphs with n self-loops and are both special cases of the consensus algorithm of Olfati-Saber and Murray. The notion of Perron matrices was introduced as the discrete-time counterpart of graph Laplacians in consensus protocols. A number of fundamental spectral properties of Perron matrices were proved. This led to a unified framework for expression and analysis of consensus algorithms in both continuous-time and discrete-time. Simulation results for reaching a consensus in small-worlds versus lattice-type nearest-neighbor graphs and cooperative control of multivehicle formations were presented. (pp 231)
  • Not sure about this one. It just may be another set of algorithms to do flocking. Maybe some network implications? Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. It is one of the papers that the Consensus and Cooperation paper above leans on heavily though…
  • The Emergence of Consensus: A Primer
    • The origin of population-scale coordination has puzzled philosophers and scientists for centuries. Recently, game theory, evolutionary approaches and complex systems science have provided quantitative insights on the mechanisms of social consensus. However, the literature is vast and scattered widely across fields, making it hard for the single researcher to navigate it. This short review aims to provide a compact overview of the main dimensions over which the debate has unfolded and to discuss some representative examples. It focuses on those situations in which consensus emerges ‘spontaneously’ in absence of centralised institutions and covers topic that include the macroscopic consequences of the different microscopic rules of behavioural contagion, the role of social networks, and the mechanisms that prevent the formation of a consensus or alter it after it has emerged. Special attention is devoted to the recent wave of experiments on the emergence of consensus in social systems.
  • Critical dynamics in population vaccinating behavior
    • Complex adaptive systems exhibit characteristic dynamics near tipping points such as critical slowing down (declining resilience to perturbations). We studied Twitter and Google search data about measles from California and the United States before and after the 2014–2015 Disneyland, California measles outbreak. We find critical slowing down starting a few years before the outbreak. However, population response to the outbreak causes resilience to increase afterward. A mathematical model of measles transmission and population vaccine sentiment predicts the same patterns. Crucially, critical slowing down begins long before a system actually reaches a tipping point. Thus, it may be possible to develop analytical tools to detect populations at heightened risk of a future episode of widespread vaccine refusal.
  • For Aaron’s Social Gradient Descent Agent research (lit review)
    • On distributed search in an uncertain environment (Something like Social Gradient Descent Agents)
      • The paper investigates the case where N agents solve a complex search problem by communicating to each other their relative successes in solving the task. The problem consists in identifying a set of unknown points distributed in an n–dimensional space. The interaction rule causes the agents to organize themselves so that, asymptotically, each agent converges to a different point. The emphasis of this paper is on analyzing the collective dynamics resulting from nonlinear interactions and, in particular, to prove convergence of the search process.
    • A New Clustering Algorithm Based Upon Flocking On Complex Network (Sizing and timing for flocking systems seems to be ok?)
      • We have proposed a model based upon flocking on a complex network, and then developed two clustering algorithms on the basis of it. In the algorithms, firstly a k-nearest neighbor (knn) graph as a weighted and directed graph is produced among all data points in a dataset each of which is regarded as an agent who can move in space, and then a time-varying complex network is created by adding long-range links for each data point. Furthermore, each data point is not only acted by its k nearest neighbors but also r long-range neighbors through fields established in space by them together, so it will take a step along the direction of the vector sum of all fields. It is more important that these long-range links provides some hidden information for each data point when it moves and at the same time accelerate its speed converging to a center. As they move in space according to the proposed model, data points that belong to the same class are located at a same position gradually, whereas those that belong to different classes are away from one another. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the rates of convergence of clustering algorithms are fast enough. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
  • Done with the first draft of the white paper! And added the RFP section to the LMN productization version
  • Amazon Sage​Maker: Amazon SageMaker is a fully managed machine learning service. With Amazon SageMaker, data scientists and developers can quickly and easily build and train machine learning models, and then directly deploy them into a production-ready hosted environment. It provides an integrated Jupyter authoring notebook instance for easy access to your data sources for exploration and analysis, so you don’t have to manage servers. It also provides common machine learning algorithms that are optimized to run efficiently against extremely large data in a distributed environment. With native support for bring-your-own-algorithms and frameworks, Amazon SageMaker offers flexible distributed training options that adjust to your specific workflows. Deploy a model into a secure and scalable environment by launching it with a single click from the Amazon SageMaker console. Training and hosting are billed by minutes of usage, with no minimum fees and no upfront commitments. (from the documentation)

4:00 – 5:00 Meeting with Aaron M. to discuss Academic RB wishlist.

Phil 12.1.17

7:00 – 4:30 ASRC MKT

ZeynepWeb1-3

  • High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. This shows NNs filling in slots in semantic maps (which are actually semantic mattes, and not to be confused with earlier self-organizing semantic maps). How is this with other, more linear processes like sound and narrative?
  • Continuing Alignment in social interactions here.
  • People flock in computer mediated environments: Spontaneous flocking in human groups
  • Schooling as a strategy for taxis in a noisy environment
    • Daniel Grunbaum
    • Abstract
      • A common strategy to overcome this problem is taxis, a behaviour in which an animal performs a biased random walk by changing direction more rapidly when local conditions are getting worse.
        • Consider voters switching from Bush->Obama->Trump
      • Such an animal spends more time moving in right directions than wrong ones, and eventually gets to a favourable area. Taxis is ineffcient, however, when environmental gradients are weak or overlain by `noisy’ small-scale fluctuations. In this paper, I show that schooling behaviour can improve the ability of animals performing taxis to climb gradients, even under conditions when asocial taxis would be ineffective. Schooling is a social behaviour incorporating tendencies to remain close to and align with fellow members of a group. It enhances taxis because the alignment tendency produces tight angular distributions within groups, and dampens the stochastic effects of individual sampling errors. As a result, more school members orient up-gradient than in the comparable asocial case. However, overly strong schooling behaviour makes the school slow in responding to changing gradient directions. This trade-off suggests an optimal level of schooling behaviour for given spatio-temporal scales of environmental variations.
        • This has implications for everything from human social interaction to ANN design.
    • Notes
      • Because limiting resources typically have `patchy’ distributions in which concentrations may vary by orders of magnitude, success or failure in finding favourable areas often has an enormous impact on growth rates and reproductive success. To locate resource concentrations, many aquatic organisms display tactic behaviours, in which they orient with respect to local variations in chemical stimuli or other environmental properties. (pp 503)
      • Here, I propose that schooling behaviours improve the tactic capabilities of school members, and enable them to climb faint and noisy gradients which they would otherwise be unable to follow. (pp 504)
      • Schooling is thought to result from two principal behavioural components: (1) tendencies to move towards neighbours when isolated, and away from them when too close, so that the group retains a characteristic level of compactness; and (2) tendencies to align orientation with those of neighbours, so that nearby animals have similar directions of travel and the group as a whole exhibits a directional polarity. (pp 504)
        • My models indicate that attraction isn’t required, as long as there is a distance-graded awareness. In other words, you align most strongly with those agents that are closest.
      • I focus in this paper on schooling in aquatic animals, and particularly on phytoplankton as a distributed resource. However, although I do not examine them specifically, the modelling approaches and the basic results apply more generally to other environmental properties (such as temperature), to other causes of population movement (such as migration) and to other socially aggregating species which form polarized groups (such as flocks, herds and swarms). (pp 504)
      • Under these circumstances, the search of a nektonic filter-feeder for large-scale concentrations of phytoplankton is analogous to the behaviour of a bacterium performing chemotaxis. The essence of the analogy is that, while higher animals have much more sophisticated sensory and cognitive capacities, the scale at which they sample their environment is too small to identify accurately the true gradient. (pp 505)
        • And, I would contend for determining optimal social interactions in large groups.
      • Bacteria using chemotaxis usually do not directly sense the direction of the gradient. Instead, they perform random walks in which they change direction more often or by a greater amount if conditions are deteriorating than if they are improving (Keller and Segel, 1971; Alt, 1980; Tranquillo, 1990). Thus, on average, individuals spend more time moving in favourable directions than in unfavourable ones. (pp 505)
      • A bacterial analogy has been applied to a variety of behaviours in more complex organisms, such as spatially varying di€usion rates due to foraging behaviours or food-handling in copepods and larval ®sh (Davis et al., 1991), migration patterns in tuna (Mullen, 1989) and restricted area searching in ladybugs (Kareiva and Odell, 1987) and seabirds (Veit et al., 1993, 1995). The analogy provides for these higher animals a quantitative prediction of distribution patterns and abilities to locate resources at large space and time scales, based on measurable characteristics of small-scale movements. (pp 505)
      • I do not consider more sophisticated (and possibly more effective) social tactic algorithms, in which explicit information about the environment at remote points is actively or passively transmitted between individuals, or in which individual algorithms (such as slowing down when in relatively high concentrations) cause the group to function as a single sensing unit (Kils, 1986, described in Pitcher and Parrish, 1993). (pp 506)
        • This is something that could be easily added to the model. There could be a multiplier for each data cell that acts as a velocity scalar of the flock. That should have significant effects! This could also be applied to gradient descent. The flock of Gradient Descent Agents (GDAs) could have a higher speed across the fitness landscape, but slow and change direction when a better value is found by one of the GDAs. It occurs to me that this would work with a step function, as long as the baseline of the flock is sufficiently broad.
      • When the noise predominates (d <= 1), the angular distribution of individuals is nearly uniform, and the up-gradient velocity is near zero. In a range of intermediate values of d(0.3 <= d <= 3), there is measurable but slow movement up-gradient. The question I will address in the next two sections is: Can individuals in this intermediate signal-to-noise range with slow gradient-climbing rates improve their tactic ability by adopting a social behaviour (i.e. schooling)? (pp 508)
      • The key attributes of these models are: (1) a decreasing probability of detection or responsiveness to neighbours at large separation distances; (2) a social response that includes some sort of switch from attractive to repulsive interactions with neighbours, mediated by either separation distance or local density of animals*; and (3) a tendency to align with neighbours (Inagaki et al., 1976; Matuda and Sannomiya, 1980, 1985; Aoki, 1982; Huth and Wissel, 1990, 1992; Warburton and Lazarus, 1991; Grunbaum, 1994). (pp 508)
        • Though not true of belief behavior (multiple individuals can share the same belief), for a Gradient Descent Agent (GDA), the idea of attraction/repulsion may be important.
      • If the number of neighbours is within an acceptable range, then the individual does not respond to them. On the other hand, if the number is outside that range, the individual turns by a small amount, Δθ3, to the left or right according to whether it has too many or too few of them and which side has more neighbours. In addition, at each time step, each individual randomly chooses one of its visible neighbours and turns by a small amount, Δθ4, towards that neighbour’s heading. (pp 508)
      • The results of simulations based on these rules show that schooling individuals, on average, move more directly in an up-gradient direction than asocial searchers with the same tactic parameters. Figure 4 shows the distribution of individuals in simulations of asocial and social taxis in a periodic domain (i.e. animals crossing the right boundary re-enter the left boundary, etc.). (pp 509)
      • Gradient Schooling
      • As predicted by Equation (5), asocial taxis results in a broad distribution of orientations, with a peak in the up-gradient (positive x-axis) direction but with a large fraction of individuals moving the wrong way at any given time (Fig. 5a,b). By comparison, schooling individuals tend to align with one another, forming a group with a tightened angular distribution. There is stochasticity in the average velocity of both asocial and social searchers (Fig. 5c). On average, however, schooling individuals move up-gradient faster and more directly than asocial ones. These simulation results demonstrate that it is theoretically possible to devise tactic search strategies utilizing social behaviours that are superior to asocial algorithms. That is, one of the advantages of schooling is that, potentially, it allows more successful search strategies under `noisy’ environmental conditions, where variations on the micro-scales at which animals sense their environment obscure the macro-scale gradients between ecologically favourable and unfavourable regions. (pp 510)
      • School-size effects must depend to some extent on the tactic and schooling algorithms, and the choices of parameters. However, underlying social taxis are the statistics of pooling outcomes of independent decisions, so the numerical dependence on school size may operate in a similar manner for many comparable behavioural schemes. For example, it seems reasonable to expect that, in many alternative schooling and tactic algorithms, decisions made collectively by less than 10 individuals would show some improvement over the asocial case but also retain much of the variability. Similarly, in most scenarios, group statistics probably vary only slowly with group size once it reaches sizes of 50-100. (pp 514)
      • when group size becomes large, the behaviour of model schools changes in character. With numerous individuals, stochasticity in the behaviour of each member has a relatively weaker effect on group motion. The behaviour of the group as a whole becomes more consistent and predictable, for longer time periods. (pp 514)
        • I think that this should be true in belief spaces as well. It may be difficult to track one person’s trajectory, but a group in aggregate, particularly a polarized group may be very detectable.
      • An example of group response to changing gradient direction shows that there can be a cost to strong alignment tendency. In this example, the gradient is initially pointed in the negative y-direction (Fig. 9). After an initial period of 5 time units, during which the gradient orients perpendicularly to the x-axis, the gradient reverts to the usual x-direction orientation. The school must then adjust to its new surroundings by shifting to climb the new gradient. This example shows that alignment works against course adjustment: the stronger the tendency to align, the slower is the group’s reorientation to the new gradient direction. This is apparently due to a non-linear interaction between alignment and taxis: asymmetries in the angular distribution during the transition create a net alignment flux away from the gradient direction. Thus, individuals that pay too much attention to neighbours, and allow alignment to overwhelm their tactic tendencies, may travel rapidly and persistently in the wrong direction. (pp 516)
        • So, if alignment (and velocity matching) are strong enough, the conditions for a stampede (group behavior with negative outcomes – in this case, less food) emerge
      • The models also suggest that there is a trade-off in strengthening tendencies to align with neighbours: strong alignment produces tight angular distributions, but increases the time needed to adjust course when the direction of the gradient changes. A reasonable balance seems to be achieved when individuals take roughly the same time to coalesce into a polarized group as they do to orient to the gradient in asocial taxis. (pp 518)
        • There is something about the relationship between explore and exploit in this statement that I really need to think about.
      • Social taxis is potentially effective in animals whose resources vary substantially over large length scales and for whom movements over these scales are possible. (pp 518)
        • Surviving as a social animal requires staying in the group. Since belief can cover wide ranges (e.g. religion), does there need to be a mechanism where individuals can harmonize their beliefs? From Social Norms and Other Minds The Evolutionary Roots of Higher Cognition :  Field research on primate societies in the wild and in captivity clearly shows that the capacity for (at least) implicit appreciation of permission, prohibition, and obligation social norms is directly related to survival rates and reproductive success. Without at least a rudimentary capacity to recognize and respond appropriately to these structures, remaining within a social group characterized by a dominance hierarchy would be all but impossible.
      • Interestingly, krill have been reported to school until a food patch has been discovered, whereupon they disperse to feed, consistent with a searching function for schooling. The apparent effectiveness of schooling as a strategy for taxis suggests that these schooling animals may be better able to climb obscure large-scale gradients than they would were they asocial. Interactive effects of taxis and sociality may affect the evolutionary value of larger groups both directly, by improving foraging ability with group size, and indirectly, by constraining alignment rates. (pp 518)
      • An example where sociality directly affects foraging strategy is forage area copying, in which unsuccessful fish move to the vicinity of neighbours that are observed to be foraging successfully (Pitcher et al., 1982; Ranta and Kaitala, 1991; Pitcher and Parrish, 1993). Pitcher and House (1987) interpreted area copying in goldfish as the result of a two-stage decision process: (1) a decision to stay put or move depending on whether feeding rate is high or low; and (2) a decision to join neighbours or not based upon whether or not further solitary searching is successful. Similar group dynamics have been observed in foraging seabirds (Porter and Seally, 1982; Haney et al., 1992).
      • Synchrokinesis depends upon the school having a relatively large spatial extent: part of a migrating school encounters an especially favourable or unfavourable area. The response of that section of the school is propagated throughout the school by alignment and grouping behaviours, with the result that the school as a whole is more effective at route-finding than isolated individuals. Forage area copying and synchrokinesis are distinct from social taxis in that an individual discovers and reacts to an environmental feature or resource, and fellow group members exploit that discovery. In social taxis, no individual need ever have greater knowledge about the environment than any other — social taxis is essentially bound up in the statistics of pooling the outcomes of many unreliable decisions. Synchrokinesis and social taxis are complementary mechanisms and may be expected to co-occur in migrating and gradient-climbing schools. (pp 519)
      • For example, in the comparisons of taxis among groups of various sizes, the most successful individuals were in the asocial simulation, even though as a fraction of the entire population they were vanishingly small. (pp 519)
        • Explorers have the highest payoff for the highest risks
  • Continuing white paper. Done with intro, background, and phase 1
  • Intel-powered AI Helps Fight Fraud

Phil 11.23.17

Nice – I can get my notes of the Kindle by plugging it into my computer. I never found that on the help pages.

More than a Million Pro-Repeal Net Neutrality Comments were Likely Faked

  • I used natural language processing techniques to analyze net neutrality comments submitted to the FCC from April-October 2017, and the results were disturbing.
  • BotPlusOrganicI think that this kind of long-tail distribution is going to be what herding looks like.

Speaker–listener neural coupling underlies successful communication

    • Greg J. Stephens
    • Lauren J. Silbert
    • Uri Hasson (HassonLab at Princeton)
    • Verbal communication is a joint activity; however, speech production and comprehension have primarily been analyzed as independent processes within the boundaries of individual brains. Here, we applied fMRI to record brain activity from both speakers and listeners during natural verbal communication. We used the speaker’s spatiotemporal brain activity to model listeners’ brain activity and found that the speaker’s activity is spatially and temporally coupled with the listener’s activity. This coupling vanishes when participants fail to communicate. Moreover, though on average the listener’s brain activity mirrors the speaker’s activity with a delay, we also find areas that exhibit predictive anticipatory responses. We connected the extent of neural coupling to a quantitative measure of story comprehension and find that the greater the anticipatory speaker–listener coupling, the greater the understanding. We argue that the observed alignment of production- and comprehension-based processes serves as a mechanism by which brains convey information.
      • This seems to be the root article for neural coupling. It seems to be an area of vigorous study, with lots of work coming out from the three authors.
      • The study design is also really good.
    • In this study we directly examine the spatial and temporal coupling between production and comprehension across brains during natural verbal communication. (pp 14425)
    • Using fMRI, we recorded the brain activity of a speaker telling an unrehearsed real-life story and the brain activity … (n = 11) of a listener listening to the recorded audio of the spoken story, thereby capturing the time-locked neural dynamics from both sides of the communication. Finally, we used a detailed questionnaire to assess the level of comprehension of each listener. (pp 14425)
    • …because communication unfolds over time, this coupling will exhibit important temporal structure. In particular, because the speaker’s production-based processes mostly precede the listener’s comprehension-based processes, the listener’s neural dynamics will mirror the speaker’s neural dynamics with some delay. Conversely, when listeners use their production system to emulate and predict the speaker’s utterances, we expect the opposite: the listener’s dynamics will precede the speaker’s dynamics. (pp 14425)
    • To analyze the direct interaction of production and comprehension mechanisms, we considered only spatially local models that measure the degree of speaker–listener coupling within the same Talairach location. (pp 14426)
    • we also observed significant speaker–listener coupling in a collection of extralinguistic areas known to be involved in the processing of semantic and social aspects of the story (19), including the precuneus, dorsolateral prefrontal cortex, orbitofrontal cortex, striatum, and medial prefrontal cortex. (pp 14426)
    • In agreement with previous work, the story evoked highly reliable activity inmany brain areas across all listeners (8, 11, 12) (Fig. 2B, yellow). We note that the agreement with previous work is far from assured: the story here was both personal and spontaneous, and was recorded in the noisy environment of the scanner. The similarity in the response patterns across all listeners underscores a strong tendency to process incoming verbal information in similar ways. A comparison between the speaker–listener and the listener–listenermaps reveals an extensive overlap (Fig. 2B, orange). These areas include many of the sensory related, classic linguistic-related and extralinguistic-related brain areas, demonstrating that many of the areas involved in speech comprehension (listener–listener coupling) are also aligned during communication (speaker–listener coupling). (pp 14426)
    • To test whether the extensive speaker–listener coupling emerges only when information is transferred across interlocutors, we blocked the communication between speaker and listener. We repeated the experiment while recording a Russian speaker telling a story in the scanner, and then played the story to non–Russian speaking listeners (n = 11). In this experimental setup, although the Russian speaker is trying to communicate information, the listeners are unable to extract the information from the incoming acoustic sounds. Using identical analysis methods and statistical thresholds, we found no significant coupling between the speaker and the listeners or among the listeners. At significantly lower thresholds we found that the non–Russian-speaking listener–listener coupling was confined to early auditory cortices. This indicates that the reliable activity in most areas, besides early auditory cortex, depends on a successful processing of the incoming information, and is not driven by the low-level acoustic aspects of the stimuli. (pp 14426)
    • Neural Coupling
      • In my model, the anticipation is modeled by the alignment and velocity, but others come to similar conclusions. It may be a way of dealing with noisy environments. Which would be another way of saying group dynamics with incomplete information.
    • Our analysis also identifies a subset of brain regions in which the activity in the listener’s brain precedes the activity in the speaker’s brain. The listener’s anticipatory responses were localized to areas known to be involved in predictions and value representation (pp 14428)
    • Such findings are in agreement with the theory of interactive linguistic alignment (1). According to this theory, production and comprehension become tightly aligned on many different levels during verbal communication, including the phonetic, phonological, lexical, syntactic, and semantic representations. Accordingly, we observed neural coupling during communication at many different processing levels, including low-level auditory areas (induced by the shared input), production-based areas (e.g., Broca’s area), comprehension based areas (e.g., Wernicke’s area and TPJ), and high-order extralinguistic areas (e.g., precuneus and mPFC) that can induce shared contextual model of the situation (34). Interestingly, some of these extralinguistic areas are known to be involved in processing social information crucial for successful communication, including, among others, the capacity to discern the beliefs, desires, and goals of others. (pp 14429)

 

Brain-to-Brain coupling: A mechanism for creating and sharing a social world

  • Cognition materializes in an interpersonal space. The emergence of complex behaviors requires the coordination of actions among individuals according to a shared set of rules. Despite the central role of other individuals in shaping our minds, most cognitive studies focus on processes that occur within a single individual. We call for a shift from a single-brain to a multi-brain frame of reference. We argue that in many cases the neural processes in one brain are coupled to the neural processes in another brain via the transmission of a signal through the environment. Brain-to-brain coupling constrains and simplifies the actions of each individual in a social network, leading to complex joint behaviors that could not have emerged in isolation

Phil 9.14.17

7:00 – 4:00 ASRC MKT

  • Reducing Dimensionality from Dimensionality Reduction Techniques
    • In this post I will do my best to demystify three dimensionality reduction techniques; PCA, t-SNE and Auto Encoders. My main motivation for doing so is that mostly these methods are treated as black boxes and therefore sometime are misused. Understanding them will give the reader the tools to decide which one to use, when and how.
      I’ll do so by going over the internals of each methods and code from scratch each method (excluding t-SNE) using TensorFlow. Why TensorFlow? Because it’s mostly used for deep learning, lets give it some other challenges 🙂
      Code for this post can be found in this notebook.
    • This seems important to read in preparation for the Normative Mapping effort.
  • Stanford  deep learning tutorial. This is where I got the links to PCA and Auto Encoders, above.
  • Ok, back to writing:
    • The Exploration-Exploitation Dilemma: A Multidisciplinary Framework
    • Got hung up explaining the relationship of the social horizon radius, so I’m going to change it to the exploit radius. Also changed the agent flocks to red and green: GPM
    • There is a bug, too – when I upped the CellAccumulator hypercube size from 10-20. The max row is not getting set

Phil 9.12.17

7:00 – 5:00 ASRC MKT

  • Meeting with Wayne yesterday after Fika. Get him a draft by the end of the week to discuss Monday?
  • More writing
  • Herding in humans (Ramsey M. Raafat, Nick Chater, and Chris Frith)
    • Herding is a form of convergent social behaviour that can be broadly defined as the alignment of the thoughts or behaviours of individuals in a group (herd) through local interaction and without centralized coordination. We suggest that herding has a broad application, from intellectual fashion to mob violence; and that understanding herding is particularly pertinent in an increasingly interconnected world. An integrated approach to herding is proposed, describing two key issues: mechanisms of transmission of thoughts or behaviour between agents, and patterns of connections between agents. We show how bringing together the diverse, often disconnected, theoretical and methodological approaches illuminates the applicability of herding to many domains of cognition and suggest that cognitive neuroscience offers a novel approach to its study.
  • Alignment in social interactions (M.Gallotti, M.T.Fairhurst, C.D.Frith)
    • According to the prevailing paradigm in social-cognitive neuroscience, the mental states of individuals become shared when they adapt to each other in the pursuit of a shared goal. We challenge this view by proposing an alternative approach to the cognitive foundations of social interactions. The central claim of this paper is that social cognition concerns the graded and dynamic process of alignment of individual minds, even in the absence of a shared goal. When individuals reciprocally exchange information about each other’s minds processes of alignment unfold over time and across space, creating a social interaction. Not all cases of joint action involve such reciprocal exchange of information. To understand the nature of social interactions, then, we propose that attention should be focused on the manner in which people align words and thoughts, bodily postures and movements, in order to take one another into account and to make full use of socially relevant information.
  • Herding and escaping responses of juvenile roundfish to square mesh window in a trawl cod end (This is the only case I can find of 3-D stampeding. Note the [required?] dimension reduction)
    • The movements of juvenile roundfish, mainly haddock Melanogrammus aeglefinus and whiting Merlangius merlangus, reacting to a square mesh window in the cod end of a bottom trawl were observed during fishing experiments in the North Sea. Two typical behavioral responses of roundfish are described as the herding response and the escaping response, which were analyzed from video recordings by time sequences of the movement parameters. It was found that most of the actively escaping fish approached the square mesh window at right angles by swimming straight ahead with very little change in direction, while most of the herded fish approached the net at obtuse angles and retreated by sharp turning. The herding and escaping responses showed significant difference when characterized by frequency distributions of swimming speed and angular velocity, and both responses showed large and irregular variations in swimming movement parameters like the panic erratic responses. It is concluded that an escaping or herding response to the square mesh window could be decided by an interaction between the predictable parameters that describe the stimuli of net and angular changes of fish response, such as approaching angle, turning angle and angular velocity.
  • Assessing the Effect of “Disputed” Warnings and Source Salience on Perceptions of Fake News Accuracy
    • What are effective techniques for combating belief in fake news? Tagging fake articles with “Disputed by 3rd party fact-checkers” warnings and making articles’ sources more salient by adding publisher logos are two approaches that have received large-scale rollouts on social media in recent months. Here we assess the effect of these interventions on perceptions of accuracy across seven experiments (total N=7,534). With respect to disputed warnings, we find that tagging articles as disputed did significantly reduce their perceived accuracy relative to a control without tags, but only modestly (d=.20, 3.7 percentage point decrease in headlines judged as accurate). Furthermore, we find a backfire effect – particularly among Trump supporters and those under 26 years of age – whereby untagged fake news stories are seen as more accurate than in the control. We also find a similar spillover effect for real news, whose perceived accuracy is increased by the presence of disputed tags on other headlines. With respect to source salience, we find no evidence that adding a banner with the logo of the headline’s publisher had any impact on accuracy judgments whatsoever. Together, these results suggest that the currently deployed approaches are not nearly enough to effectively undermine belief in fake news, and new (empirically supported) strategies are needed.
  • Some meetings on marketing. Looks like we’re trying to get on this panel. Wrote bioblurbs!
  • More writing. Reasonable progress.

Phil 8.29.16

7:00 – 6:00 ASRC

  • Selective Use of News Cues: A Multiple-Motive Perspective on Information Selection in Social Media Environments – Quite close to the Explorer/Confirmer/Avoider study but using a custom(?) browsing interface that tracked the marking of news stories to read later. Subjects were primed for a task with motivations – accuracy, defense and impression. Added this to paragraph 2.9, where explorers are introduced.
  • Looked through Visual Complexity – Mapping Patterns of Information, and it doesn’t even mention navigation. Most information mapping efforts are actually graphing efforts. Added a paragraph in section 2.7
  • Added a TODO for groupthink/confirmation bias, etc.
  • Chat with Heath about AI.He’s looking to build a MUD agent and will probably wind up learning WEKA, etc. so a win, I think.
  • Working on getting the configurator to add string values.
  • Added to DocumentStatistics. Need to switch over to getSourceInfo() from getAddressStrings in the Configurator.
  • Meeting with Wayne about the proposal. One of the branches of conversation went into some research he did on library architecture. That’s been rattling around in my head.
    We tend to talk about interface design where the scale is implicitly for the individual. The environment where these systems function is often thought of as an ecosystem, with the Darwinian perspective that goes along with that. But I think that such a perspective leads to ‘Survival of the Frictionlesss’, where the easiest thing to use wins and damn the larger consequences.
    Reflecting on how the architecture and layout of libraries affected the information interactions of the patrons, I wonder whether we should be thinking about Information Space Architecture. Such a perspective means that the relationships between design at differing scales needs to be considered. In the real world, architecture can encompass everything from the chairs in a room to the landscaping around the building and how that building fits into the skyline.
    I think that regarding information spaces as a designed continuum from the very small to very large is what my dissertation is about at its core. I want a park designed for people, not a wilderness, red in tooth and claw.

Phil 8.26.16

7:00 – 4:00 ASRC

    • Adding more model feedback
    • Something more to think about WRT Group Polarization models? Collective Memory and Spatial Sorting in Animal Groups
    • Need to be able to associate an @attribute  key/value map with Labeled2Dmatrix rows so that we can compare different nominal values across a shared set of numeric columns. This may wind up being a derived class?
      • Working on adding an array of key/value maps;
      • Forgot to add the name to the @data section – oops!
      • text is added to ARFF out. Should I add it to the xlsx outputs as well?
    • Here’s the initial run against the random test data within the class (L2D.arff).
=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes
Relation: testdata
Instances: 8
Attributes: 12
name
sv1
sv2
sv3
p1
p2
p3
p4
s1
s2
s3
s4
Test mode: split 66.0% train, remainder test

=== Classifier model (full training set) ===

Naive Bayes Classifier

Class
Attribute p1 p2 p3 p4 s1 s2 s3 s4
(0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)
=======================================================================
sv1
p4-sv1 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0
s2-sv1 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0
p2-sv1 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0
s1-sv1 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0
[total] 4.0 5.0 4.0 5.0 5.0 5.0 4.0 4.0

sv2
p2-sv2 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0
s4-sv2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
p1-sv2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
s1-sv2 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0
[total] 5.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0

sv3
p2-sv3 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0
p1-sv3 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
s4-sv3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
p3-sv3 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0
p4-sv3 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0
s2-sv3 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0
s1-sv3 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0
[total] 8.0 8.0 8.0 8.0 8.0 8.0 7.0 8.0

p1
mean 1 0 0 0 1 1 0 0
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

p2
mean 0 1 0 0 1 0 1 0
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

p3
mean 0 0 1 0 1 0 0 1
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

p4
mean 0 0 0 1 1 0 0 1
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

s1
mean 1 1 1 1 1 0 0 0
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

s2
mean 1 0 0 0 0 1 0 0
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

s3
mean 0 1 0 0 0 0 1 0
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1

s4
mean 0 0 1 1 0 0 0 1
std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
weight sum 1 1 1 1 1 1 1 1
precision 1 1 1 1 1 1 1 1



Time taken to build model: 0 seconds

=== Evaluation on test split ===

Time taken to test model on training split: 0 seconds

=== Summary ===

Correctly Classified Instances 0 0 %
Incorrectly Classified Instances 3 100 %
Kappa statistic 0
Mean absolute error 0.2499
Root mean squared error 0.4675
Relative absolute error 108.2972 %
Root relative squared error 133.419 %
Total Number of Instances 3

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.000 0.333 0.000 0.000 0.000 0.000 ? ? p1
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 p2
0.000 0.333 0.000 0.000 0.000 0.000 ? ? p3
0.000 0.000 0.000 0.000 0.000 0.000 ? ? p4
0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 s1
0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 s2
0.000 0.333 0.000 0.000 0.000 0.000 ? ? s3
0.000 0.000 0.000 0.000 0.000 0.000 ? ? s4
Weighted Avg. 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.611

=== Confusion Matrix ===

a b c d e f g h <-- classified as
0 0 0 0 0 0 0 0 | a = p1
0 0 0 0 0 0 1 0 | b = p2
0 0 0 0 0 0 0 0 | c = p3
0 0 0 0 0 0 0 0 | d = p4
0 0 1 0 0 0 0 0 | e = s1
1 0 0 0 0 0 0 0 | f = s2
0 0 0 0 0 0 0 0 | g = s3
0 0 0 0 0 0 0 0 | h = s4
  • Need to add text data from xml or from other(wrapper info? structured data? UI selections?) sources