Phil 11.18.19

7:00 – 4:00 ASRC GOES

  • Dissertation
    • Finished my notes on the introduction to History of Cartography
    • Started in on the discussion, which is a poorly organized mess
  • Evolver
    • Moving the optimization to a hyperparameter folder in TimeSeriesML2. Validating – it works!
    • Make sure that genomes don’t repeat. Making progress, but it’s complex and slow going. Right now it doesn’t repeat on the value, but I don’t think that’s quite right
    • Getting the parameters to print in the spreadsheet history. That’s mostly working, but the function cur_value isn’t working quite right. This may be affecting the evolution of the system, which hits a plateau.
  • Meeting with Aaron M. Went over the discussion debris, and worked towards getting things to behave. Need to define what a phase is, and remove occurances of social influence distance. Also discussed getting an editor. My bibfile is a mess

Phil 11.15.19

7:00 – 4:00 ASRC GOES

  • Morning Meeting with Wayne
    • Quotes need page numbers
    • Found out more about why Victor’s defense was postponed. Became nervous as a result
  • Dissertation – starting the discussion section
    • I’m thinking about objective functions and how individual and group objectives work together, particularly in extreme conditions.
    • In extreme situations, the number of options available to an agent or group is diminished. There may be only one move apparently available in a chess game. A race car at the limits of adhesion has only one path through a turn. A boxer has a tiny window to land a blow. As the floodwaters rise, the range of options diminish. In a tsunami, there is only one option – run.
    • Here’s a section from article 2 of the US Military Code of Conduct (from here):
      • Surrender is the willful act of members of the Armed Forces turning themselves over to enemy forces when not required by utmost necessity or extremity. Surrender is always dishonorable and never allowed. When there is no chance for meaningful resistance, evasion is impossible, and further fighting would lead to their death with no significant loss to the enemy, members of Armed Forces should view themselves as “captured” against their will versus a circumstance that is seen as voluntarily “surrendering.”
    • If a machine is trained for combat, will it have learned the concept of surrender? According to the USCoC, no, surrender is never allowed. A machine trained to “win”, like Google’s Alpha Go, do not learn to resign. That part has to be explicitly coded in (from Wired):
      • According to David Silver, another DeepMind researcher who led the creation of AlphaGo, the machine will resign not when it has zero chance of winning, but when its chance of winning dips below 20 percent. “We feel that this is more respectful to the way humans play the game,” Silver told me earlier in the week. “It would be disrespectful to continue playing in a position which is clearly so close to loss that it’s almost over.”
    • Human organizations, like armys and companies are a kind of superhuman intelligence, made up of human parts with their own objective functions. In the case of a company, that objective is often to maximise shareholder value (NYTimes by Milton Friedman):
      • But the doctrine of “social responsibility” taken seriously would extend the scope of the political mechanism to every human activity. It does not differ in philosophy from the most explicitly collectivist doctrine. It differs only by professing to believe that collectivist ends can be attained without collectivist means. That is why, in my book “Capitalism and Freedom,” I have called it a “fundamentally subversive doctrine” in a free society, and have said that in such a society, “there is one and only one social responsibility of business – to use its resources and engage in activities designed to increase its profits so long as it stays within the rules of the game, which is to say, engages in open and free competition without deception fraud.”
    • When any kind of population focuses singly on a particular goal, it creates shared social reality. The group aligns with the goal and pursues it. In the absence of the awareness of the environmental effects of this orientation, it is possible to stampede off a cliff, or shape the environment so that others deal with the consequences of this goal.
    • It is doubtful that many people deliberately choose to be obese. However, markets and the profit motive have resulted in a series of innovations, ranging from agriculture to aisles of high-fructose corn syrup-based drinks at the local supermarket. The logistics chain that can create and sell a 12oz can of brand-name soda for about 35 cents is a modern miracle, optimized to maximize income for every link in the chain. But in this case, the costs of competition have created an infinite supply of heavily marketed empty calories. Even though we are aware at some level that we should rarely – if ever – have one of these beverages, they are consumed by the billions
    • The supply chain for soda is a form of superintelligence, driven by a simple objective function. It is resilient and adaptive, capable of dealing with droughts, wars, and changing fashion. It is also contributing to the deaths of approximately 300,000 Americans annually.
    • How is this like combat? Reflexive vs. reflective. Low-diversity thinking are a short-term benefit for many organizations, they enable first-mover advantage, which can serve to crowd out more diverse (more expensive) thinking. More here…

Phil 11.14.19

7:00 – 3:30 ASRC GOES

  • Dissertation – Done with Human Study!
  • Evolver
      • Work on parameter passing and function storing
      • You can use the * operator before an iterable to expand it within the function call. For example:
        timeseries_list = [timeseries1 timeseries2 ...]
        r = scikits.timeseries.lib.reportlib.Report(*timeseries_list)
      • Here’s the running code with variable arguments
        def plus_func(v1:float, v2:float) -> float:
            return v1 + v2
        
        def minus_func(v1:float, v2:float) -> float:
            return v1 - v2
        
        def mult_func(v1:float, v2:float) -> float:
            return v1 * v2
        
        def div_func(v1:float, v2:float) -> float:
            return v1 / v2
        
        if __name__ == '__main__':
            func_array = [plus_func, minus_func, mult_func, div_func]
        
            vf = EvolveAxis("func", ValueAxisType.FUNCTION, range_array=func_array)
            v1 = EvolveAxis("X", ValueAxisType.FLOAT, parent=vf, min=-5, max=5, step=0.25)
            v2 = EvolveAxis("Y", ValueAxisType.FLOAT, parent=vf, min=-5, max=5, step=0.25)
        
            for f in func_array:
                result = vf.get_random_val()
                print("------------\nresult = {}\n{}".format(result, vf.to_string()))
      • And here’s the output
        ------------
        result = -1.0
        func: cur_value = div_func
        	X: cur_value = -1.75
        	Y: cur_value = 1.75
        ------------
        result = -2.75
        func: cur_value = plus_func
        	X: cur_value = -0.25
        	Y: cur_value = -2.5
        ------------
        result = 3.375
        func: cur_value = mult_func
        	X: cur_value = -0.75
        	Y: cur_value = -4.5
        ------------
        result = -5.0
        func: cur_value = div_func
        	X: cur_value = -3.75
        	Y: cur_value = 0.75
      • Now I need to get this to work with different functions with different arg lists. I think I can do this with an EvolveAxis containing a list of EvolveAxis with functions. Done, I think. Here’s what the calling code looks like:
        # create a set of functions that all take two arguments
        func_array = [plus_func, minus_func, mult_func, div_func]
        vf = EvolveAxis("func", ValueAxisType.FUNCTION, range_array=func_array)
        v1 = EvolveAxis("X", ValueAxisType.FLOAT, parent=vf, min=-5, max=5, step=0.25)
        v2 = EvolveAxis("Y", ValueAxisType.FLOAT, parent=vf, min=-5, max=5, step=0.25)
        
        # create a single function that takes no arguments
        vp = EvolveAxis("random", ValueAxisType.FUNCTION, range_array=[random.random])
        
        # create a set of Axis from the previous function evolve args
        axis_list = [vf, vp]
        vv = EvolveAxis("meta", ValueAxisType.VALUEAXIS, range_array=axis_list)
        
        # run four times
        for i in range(4):
            result = vv.get_random_val()
            print("------------\nresult = {}\n{}".format(result, vv.to_string()))
      • Here’s the output. The random function has all the decimal places:
        ------------
        result = 0.03223958125899473
        meta: cur_value = 0.8840652389671935
        ------------
        result = -0.75
        meta: cur_value = -0.75
        ------------
        result = -3.5
        meta: cur_value = -3.5
        ------------
        result = 0.7762888191296017
        meta: cur_value = 0.13200324934487906
      • Verified that everything still works with the EvolutionaryOptimizer. Now I need to make sure that the new mutations include these new dimensions

     

  • I think I should also move TF2OptimizationTestBase to TimeSeriesML2?
  • Starting Human Compatible

Phil 11.13.19

7:00 – 3:00 ASRC

3rd Annual DoD AI Industry Day

From Stewart Russell, via BBC Business Daily and the AI Alignment podcast:

Although people have argued that this creates a filter bubble or a little echo chamber where you only see stuff that you like and you don’t see anything outside of your comfort zone. That’s true. It might tend to cause your interests to become narrower, but actually that isn’t really what happened and that’s not what the algorithms are doing. The algorithms are not trying to show you the stuff you like. They’re trying to turn you into predictable clickers. They seem to have figured out that they can do that by gradually modifying your preferences and they can do that by feeding you material. That’s basically, if you think of a spectrum of preferences, it’s to one side or the other because they want to drive you to an extreme. At the extremes of the political spectrum or the ecological spectrum or whatever image you want to look at. You’re apparently a more predictable clicker and so they can monetize you more effectively.

So this is just a consequence of reinforcement learning algorithms that optimize click-through. And in retrospect, we now understand that optimizing click-through was a mistake. That was the wrong objective. But you know, it’s kind of too late and in fact it’s still going on and we can’t undo it. We can’t switch off these systems because there’s so tied in to our everyday lives and there’s so much economic incentive to keep them going.

So I want people in general to kind of understand what is the effect of operating these narrow optimizing systems that pursue these fixed and incorrect objectives. The effect of those on our world is already pretty big. Some people argue that operation’s pursuing the maximization of profit have the same property. They’re kind of like AI systems. They’re kind of super intelligent because they think over long time scales, they have massive information, resources and so on. They happen to have human components, but when you put a couple of hundred thousand humans together into one of these corporations, they kind of have this super intelligent understanding, manipulation capabilities and so on.

  • Predicting human decisions with behavioral theories and machine learning
    • Behavioral decision theories aim to explain human behavior. Can they help predict it? An open tournament for prediction of human choices in fundamental economic decision tasks is presented. The results suggest that integration of certain behavioral theories as features in machine learning systems provides the best predictions. Surprisingly, the most useful theories for prediction build on basic properties of human and animal learning and are very different from mainstream decision theories that focus on deviations from rational choice. Moreover, we find that theoretical features should be based not only on qualitative behavioral insights (e.g. loss aversion), but also on quantitative behavioral foresights generated by functional descriptive models (e.g. Prospect Theory). Our analysis prescribes a recipe for derivation of explainable, useful predictions of human decisions.
  • Adversarial Policies: Attacking Deep Reinforcement Learning
    • Deep reinforcement learning (RL) policies are known to be vulnerable to adversarial perturbations to their observations, similar to adversarial examples for classifiers. However, an attacker is not usually able to directly modify another agent’s observations. This might lead one to wonder: is it possible to attack an RL agent simply by choosing an adversarial policy acting in a multi-agent environment so as to create natural observations that are adversarial? We demonstrate the existence of adversarial policies in zero-sum games between simulated humanoid robots with proprioceptive observations, against state-of-the-art victims trained via self-play to be robust to opponents. The adversarial policies reliably win against the victims but generate seemingly random and uncoordinated behavior. We find that these policies are more successful in high-dimensional environments, and induce substantially different activations in the victim policy network than when the victim plays against a normal opponent. Videos are available at this http URL.

Phil 11.12.19

7:00 – 4:00 ASRC GOES

  • Dissertation – Human study discussion
    • “Degrees of Freedom” are different from “dimensions”. Dimensions, as used in machine learning, mean a single parameter that can be varied, discretely or continuously. Degrees of freedom define a continuous space that can contain things that are not contained in the dimensions. Latitude and Longitude do not define the globe. They serve as a way to show relationships between regions on the globe.
  • How news media are setting the 2020 election agenda: Chasing daily controversies, often burying policy
    • Our topic analysis of ~10,000 news articles on the 2020 Democratic candidates, published between March and October in an ideological diverse range of 28 news outlets, reveals that political coverage, at least this cycle, tracks with the ebbs and flows of scandals, viral moments and news items, from accusations of Joe Biden’s inappropriate behavior towards women to President Trump’s phone call with Ukraine. (A big thanks to Media Cloud.)
  • Neat visualization – a heatmap plus a mean. I’d like to try adding things like variance to this. From Large scale and information effects on cooperation in public good games. Looks like the Seaborn library might be able to do this.

Heatmap

  • Evolver – more GPU allocation and threading
    • Training – load and unload GPUs using thread pools
      • Updating EvolutionaryOptimizer
        • got threads working
        • Added enums, which meant that I had to handle enum key values in my ExcelUtils class
        • Updated the TimeSeriesML2 whl
        • Started folding gpu management into PyBullet. Making sure that everything still works first… It does!
      • Ok, back to TimeSeriesML2 to make nested genomes
        • Added a parent/child relationship to EvolveAxis so that it’s possible to a top-level parent (self.parent == None) to step down the tree of all the children to get the new appropriate values. These will need to be assembled into an argument string. Figure that part out tomorrow.
    • Predicting – load and use models in real time

Phil 11.11.19

7:00 –  8:00 PhD

Phil 11.8.19

7:00 – 3:00 ASRC GOES

  • Dissertation
    • Usability study! Done!
    • Discussion. This is going to take some framing. I want to tie it back to earlier navigation, particularly the transition from stories and mappaemundi to isotropic maps of Ptolemy and Mercator.
  • Sent Don and Danilo sql file
  • Start satellite component list
  • Evolver
    • Adding threads to handle the GPU. This looks like what I want (from here):
      import logging
      import concurrent.futures
      import threading
      import time
      
      def thread_function(name):
          logging.info("Task %s: starting on thread %s", name, threading.current_thread().name)
          time.sleep(2)
          logging.info("Task %s: finishing on thread %s", name, threading.current_thread().name)
      
      if __name__ == "__main__":
          num_tasks = 5
          num_gpus = 1
          format = "%(asctime)s: %(message)s"
          logging.basicConfig(format=format, level=logging.INFO,
                              datefmt="%H:%M:%S")
      
          with concurrent.futures.ThreadPoolExecutor(max_workers=num_gpus) as executor:
              result = executor.map(thread_function, range(num_tasks))
      
          logging.info("Main    : all done")

      As you can see, it’s possible to have a thread for each gpu, while having them iterate over a larger set of tasks. Now I need to extract the gpu name from the thread info. In other words,  ThreadPoolExecutor-0_0 needs to map to gpu:1.

    • Ok, this seems to do everything I need, with less cruft:
      import concurrent.futures
      import threading
      import time
      from typing import List
      import re
      
      last_num_in_str_re = '(\d+)(?!.*\d)'
      prog = re.compile(last_num_in_str_re)
      
      def thread_function(args:List):
          num = prog.search(threading.current_thread().name) # get the last number in a string
          gpu_str = "gpu:{}".format(int(num.group(0))+1)
          print("{}: starting on  {}".format(args["name"], gpu_str))
          time.sleep(2)
          print("{}: finishing on  {}".format(args["name"], gpu_str))
      
      if __name__ == "__main__":
          num_tasks = 5
          num_gpus = 5
          task_list = []
          for i in range(num_tasks):
              task = {"name":"task_{}".format(i), "value":2+(i/10)}
              task_list.append(task)
          with concurrent.futures.ThreadPoolExecutor(max_workers=num_gpus) as executor:
              result = executor.map(thread_function, task_list)
      
          print("Finished Main")

      And that gives me:

      task_0: starting on  gpu:1
      task_1: starting on  gpu:2
      task_0: finishing on  gpu:1, after sleeping 2.0 seconds
      task_2: starting on  gpu:1
      task_1: finishing on  gpu:2, after sleeping 2.1 seconds
      task_3: starting on  gpu:2
      task_2: finishing on  gpu:1, after sleeping 2.2 seconds
      task_4: starting on  gpu:1
      task_3: finishing on  gpu:2, after sleeping 2.3 seconds
      task_4: finishing on  gpu:1, after sleeping 2.4 seconds
      Finished Main

      So the only think left is to integrate this into TimeSeriesMl2

Phil 11.7.19

7:00 – 5:00 ASRC GOES

  • Dissertation
  • ML+Sim
    • Save actual and inferred efficiency to excel and plot
    • Create an illustration that shows how the network is trained, validated against the sim, then integrated into the operating system. (maybe show a physical testbed for evaluation?)
    • Demo at the NSOF
      • Went ok. Next steps are a sufficiently realistic model that can interpret an actual malfunction
      • Put together a Google Doc/Sheet that has the common core elements that we can model most satellites (LEO, MEO, GEO, and HEO?). What are the common components between cubesats and the James Webb?
      • Detection of station-keeping failure is a possibility
      • Also, high-dynamic phases, like orbit injection might be low-ish fruit
    • Tomorrow, continue on the GPU assignment in the evolver

Phil 11.6.19

7:00 – 3:00 ASRC GOES

  • Simulation for training ML at UMD: Improved simulation system developed for self-driving cars 
    • University of Maryland computer scientist Dinesh Manocha, in collaboration with a team of colleagues from Baidu Research and the University of Hong Kong, has developed a photo-realistic simulation system for training and validating self-driving vehicles. The new system provides a richer, more authentic simulation than current systems that use game engines or high-fidelity computer graphics and mathematically rendered traffic patterns.
  • Dissertation
    • Send out email setting the date/time to Feb 21, from 11:00 – 1:00. Ask if folks could move the time earlier or later for Wayne – done
    • More human study – I think I finally have a good explanation of the text convergence.
  • Maybe work of the evolver?
    • Add nested variables
    • Look at keras-tuner code to see how GPU assignment is done
      • So it looks like they are using gRPC as a way to communicate between processes? grpc
      • I mean, like separate processes, communicating via ports grpc2
      • Oh. This is why. From the tf.distribute documentation tf.distribute
      • No – wait. This is from the TF distributed training overview pagetf.distribute2
      • And that seems to straight up work (assuming that multiple GPUs can be called. Here’s an example of training:
        strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
        with strategy.scope():
            model = tf.keras.Sequential()
            # Adds a densely-connected layer with 64 units to the model:
            model.add(layers.Dense(sequence_length, activation='relu', input_shape=(sequence_length,)))
            # Add another:
            model.add(layers.Dense(200, activation='relu'))
            model.add(layers.Dense(200, activation='relu'))
            # Add a layer with 10 output units:
            model.add(layers.Dense(sequence_length))
        
            loss_func = tf.keras.losses.MeanSquaredError()
            opt_func = tf.keras.optimizers.Adam(0.01)
            model.compile(optimizer= opt_func,
                          loss=loss_func,
                          metrics=['accuracy'])
        
            noise = 0.0
            full_mat, train_mat, test_mat = generate_train_test(num_funcs, rows_per_func, noise)
        
            model.fit(train_mat, test_mat, epochs=70, batch_size=13)
            model.evaluate(train_mat, test_mat)
        
            model.save(model_name)

        And here’s an example of predicting

        strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
        with strategy.scope():
            model = tf.keras.models.load_model(model_name)
            full_mat, train_mat, test_mat = generate_train_test(num_funcs, rows_per_func, noise)
        
            predict_mat = model.predict(train_mat)
        
            # Let's try some immediate inference
            for i in range(10):
                pitch = random.random()/2.0 + 0.5
                roll = random.random()/2.0 + 0.5
                yaw = random.random()/2.0 + 0.5
                inp_vec = np.array([[pitch, roll, yaw]])
                eff_mat = model.predict(inp_vec)
                print("input: pitch={:.2f}, roll={:.2f}, yaw={:.2f}  efficiencies: pitch={:.2f}%, roll={:.2f}%, yaw={:.2f}%".
                      format(inp_vec[0][0], inp_vec[0][1], inp_vec[0][2], eff_mat[0][0]*100, eff_mat[0][1]*100, eff_mat[0][2]*100))
    • Look at TF code to see if it makes sense to add to the project. Doesn’t look like it, but I think I can make a nice hyperparameter/architecture search API using this, once validated
  • Mission Drive meeting and demo – went ok. Will Demo at NSOF tomorrow

Phil 10.5.19

“Everything that we see is a shadow cast by that which we do not see.” – Dr. King

misinfo

Transformer

ASRC GOES 7:00 – 4:30

  • Dissertation – more human study. Pretty smooth progress right now!
  • Cleaning up the sim code for tomorrow – done. All the prediction and manipulation to change the position data for the RWs and the vehicle are done in the inference section, while the updates to the drawing nodes are separated.
  • I think this is the code to generate GPT-2 Agents?: github.com/huggingface/transformers/blob/master/examples/run_generation.py

Phil 11.4.19

7:00 – 9:00 ASRC GOES

  • Cool thing: Our World in Data
    • The goal of our work is to make the knowledge on the big problems accessible and understandable. As we say on our homepage, Our World in Data is about Research and data to make progress against the world’s largest problems.
  • Dissertation – more human study
  • This is super-cool: The Future News Pilot Fund: Call for ideas
    • Between February and June 2020 we will fund and support a community of changemakers to test their promising ideas, technologies and models for public interest news, so communities in England have access to reliable and accurate news about the issues that matter most to them.
  • October status report
  • Sim + ML next steps:
    • I can’t do ensemble realtime inference because I’d need a gpu for each model. This means that I need to get the best “best” model and use that
    • Run the evolver to see if something better can be found
    • Add “flywheel mass” and “vehicle mass” to dictionary and get rid of the 0.05 value – done
    • Set up a second model that uses the inferred efficiency to move in accordance with the actual commands. Have them sit on either side of the origin
      • Graphics are done
      • Need to make second control system and ‘sim’ that uses inferred efficiency. Didn’t have to do all that. What I’m really doing is calculating rw angles based on the voltage and inferred efficiency. I can take the commands from the control system for the ‘actual’ satellite.

SimAndInferred

  • ML seminar
    • Showed the sim, which runs on the laptop. Then everyone’s status reports
  • Meeting with Aaron
    • Really good discussion. I think I have a handle on the paper/chapter. Added it to the ethical considerations section

Phil 11.3.19

Listening to the On Being interview with angel Kyodo williams

We are in this amazing moment of evolving, where the values of some of us are evolving at rates that are faster than can be taken in and integrated for peoples that are oriented by place and the work that they’ve inherited as a result of where they are.

This really makes me think of the Wundt curve (FMRI analysis here?), and how misalignment between a bourgeoisie class (think elites) and a proletariat class. Without day-to-day existence constraints, it’s possible for elites to move individually and in small groups through less traveled belief spaces. Proletarian concerns are have more “red queen” elements, so you need larger workers movements to make progress.

Phil 11.1.19

7:00 – 3:00 ASRC GOES

KerasTuner

  • Hugging Face: State-of-the-Art Natural Language Processing in ten lines of TensorFlow 2.0
    • Hugging Face is an NLP-focused startup with a large open-source community, in particular around the Transformers library. 🤗/Transformers is a python-based library that exposes an API to use many well-known transformer architectures, such as BERTRoBERTaGPT-2 or DistilBERT, that obtain state-of-the-art results on a variety of NLP tasks like text classification, information extraction, question answering, and text generation. Those architectures come pre-trained with several sets of weights. 
  • Dissertation
    • Starting on Human Study section!
    • For once there was something there that I could work with pretty directly. Fleshing out the opening
  • OODA paper:
    • Maximin (Cass Sunstein)
      • For regulation, some people argue in favor of the maximin rule, by which public officials seek to eliminate the worst worst-cases. The maximin rule has not played a formal role in regulatory policy in the Unites States, but in the context of climate change or new and emerging technologies, regulators who are unable to conduct standard cost-benefit analysis might be drawn to it. In general, the maximin rule is a terrible idea for regulatory policy, because it is likely to reduce rather than to increase well-being. But under four imaginable conditions, that rule is attractive.
        1. The worst-cases are very bad, and not improbable, so that it may make sense to eliminate them under conventional cost-benefit analysis.
        2. The worst-case outcomes are highly improbable, but they are so bad that even in terms of expected value, it may make sense to eliminate them under conventional cost-benefit analysis.
        3. The probability distributions may include “fat tails,” in which very bad outcomes are more probable than merely bad outcomes; it may make sense to eliminate those outcomes for that reason.
        4. In circumstances of Knightian uncertainty, where observers (including regulators) cannot assign probabilities to imaginable outcomes, the maximin rule may make sense. (It may be possible to combine (3) and (4).) With respect to (3) and (4), the challenges arise when eliminating dangers also threatens to impose very high costs or to eliminate very large gains. There are also reasons to be cautious about imposing regulation when technology offers the promise of “moonshots,” or “miracles,” offering a low probability or an uncertain probability of extraordinarily high payoffs. Miracles may present a mirror-image of worst-case scenarios.
  • Reaction wheel efficiency inference
    • Since I have this spiffy accurate model, I think I’m going to try using it before spending a lot of time evolving an ensemble
    • Realized that I only trained it with a voltage of +1, so I’ll need to abs(delta)
    • It’s working!

WorkingInference

  • Next steps:
    • I can’t do ensemble realtime inference because I’d need a gpu for each model. This means that I need to get the best “best” model and use that
    • Run the evolver to see if something better can be found
    • Add “flywheel mass” and “vehicle mass” to dictionary and get rid of the 0.05 value
    • Set up a second model that uses the inferred efficiency to move in accordance with the actual commands. Have them sit on either side of the origin
  • Committed everything. I think I’m done for the day

Phil 10.31.19

8:00 – 4:00 ASRC

  • Got my dissertation paperwork in!
  • To Persuade As an Expert, Order Matters: ‘Information First, then Opinion’ for Effective Communication
    • Participants whose stated preference was to follow the doctor’s opinion had significantly lower rates of antibiotic requests when given “information first, then opinion” compared to “opinion first, then information.” Our evidence suggests that “information first, then opinion” is the most effective approach. We hypothesize that this is because it is seen by non-experts as more trustworthy and more respectful of their autonomy.
    • This matters a lot because what is presented and the order of presentation is itself, an opinion. Maps lay out the information in a way that provides a larger, less edited selection of information.
  • Working on RW training set. Got the framework methods working. Here’s a particularly good run – 99% accuracy for 50 “functions” repeated 20 times each:
  • Tomorrow I’ll roll them into the optomizer. I’ve already built the subclass, but had to flail a bit to find the right way to structure and scale the data

Phil 10.30.19

7:00 – 5:00 GOES

starbird

  • Dissertation – finish up the maps chapter – done!
  • Try writing up more expensive information thoughts (added to discussion section as well)
    • Game theory comes from an age of incomplete information. Now we have access to mostly complete, but potentially expensive information
      • Expense in time – throwing the breakers on high-frequency trading
      • Expense in $$ – Buying the information you need from available resources
      • Expensive in resources – developing the hardware and software to obtain the information (Operation Hummingbird to TPU/DNN development)
    • By handing the information management to machines, we create a human-machine social structure, governed by the rules of dense/sparse,stiff/slack networks
      • AI combat is a very good example of an extremely stiff network (varies in density) and the associated time expense. Combat has to happen as fast as possible, due to OODA loop constraints. But if the system does not have designed-in capacity to negotiate a ceasefire (on both/all sides!), there may be no way to introduce it in human time scales, even though the information that one side is losing is readily apparent.
      • Online advertising is a case where existing information is hidden from the target of the advertiser, but available to the platform, and to a lesser degree, the client. Because this information asymmetry, the user’s behavior/beliefs are more likely to be exploited in a way that denies the user agency, while granting maximum agency to the platform and clients.
      • Deepfakes, spam and the costs of identifying deliberate misinformation
      • Call to action: the creation of an information environment impact body that can examine these issues and determine costs. This is too complex a process for the creators to do on their own, and there would be rampant conflict of interest anyway. But an EPA-like structure, where experts in this topic perform as a counterbalance to unconstrained development and exploitation of the information ecosystem
  • The Knowledge, Analytics, Cognitive and Cloud Computing (KnACC) lab in the Information Systems department in UMBC aims to address challenging issues at the intersection of Data Science and Cloud Computing. We are located in ITE 415.
  • GOES
    • Start creating NN that takes pitch/roll/yaw star tracker deltas and tries to calculate reaction wheel efficiency
      • input vector is dp, dr, dy. Assume a fixed timestep
      • output vector is effp, effr, effy
      • once everything trains up, try running the inferencer on the running sim and display “inferred RW efficiency” for each RW
      • Broke out the base class parts of TF2OptimizerTest. I just need to generate the test/train data for now, no sim needed

Twitter

big ending news for the day