Phil 9.11 . 19

be7c6582-044a-4a19-aa8b-de388b4a4f83-cincpt_09-11-2016_enquirer_1_b001__2016_09_10_img_xxx_world_trade_11_1_1_9kfm0g4g_l880019336_img_xxx_world_trade_11_1_1_9kfm0g4g

7:00 – 4:00 ASRC GOES

  • Model:DLG3501W SKU:6181264
  • Maryland Anatomy Board Dept of vital records 410 764 2922
  • arxiv-vanity.com  arXiv Vanity renders academic papers from arXiv as responsive web pages so you don’t have to squint at a PDF.
    • It works ok. Tables and cation alignment are a problem for now, but it sounds great for phones
  • DeepPrivacy: A Generative Adversarial Network for Face Anonymization
    • We propose a novel architecture which is able to automatically anonymize faces in images while retaining the original data distribution. We ensure total anonymization of all faces in an image by generating images exclusively on privacy-safe information. Our model is based on a conditional generative adversarial network, generating images considering the original pose and image background. The conditional information enables us to generate highly realistic faces with a seamless transition between the generated face and the existing background. Furthermore, we introduce a diverse dataset of human faces, including unconventional poses, occluded faces, and a vast variability in backgrounds. Finally, we present experimental results reflecting the capability of our model to anonymize images while preserving the data distribution, making the data suitable for further training of deep learning models. As far as we know, no other solution has been proposed that guarantees the anonymization of faces while generating realistic images.
  • Introducing a Conditional Transformer Language Model for Controllable Generation
    • CTRL is a 1.6 billion-parameter language model with powerful and controllable artificial text generation that can predict which subset of the training data most influenced a generated text sequence. It provides a potential method for analyzing large amounts of generated text by identifying the most influential source of training data in the model. Trained with over 50 different control codes, the CTRL model allows for better human-AI interaction because users can control the generated content and style of the text, as well as train it for multitask language generation. Finally, it can be used to improve other natural language processing (NLP) applications either through fine-tuning for a specific task or through transfer of representations that the model has learned.
  • Dissertation
    • Started to put together my Linux laptop for vacation writing
    • More SIH section
  • Verify that timeseriesML can be used as a library
  • Perceptron curve prediction
  • AI/ML status meetings
  • Helped Vadim with some python issues