Monthly Archives: December 2019

Phil 12.11.19

7:00 – 5:30 ASRC GOES

  • Call dentist – done!
  • Dissertation – finished designing for populations. Ethics are next

     

  • Evolver
    • Looking at Keras-Tuner (github) to compare Evolver against
    • Installing. Wow. Big. 355MB?
    • Installed the new optevolver whl. No more timeseriesml2 for tuning! Fixed many broken links in code that used timeseriesml2
    • Tried getting the keras-tuner package installed, but it seems to make the gpu invisible? Anyway, it broke everything and after figuring out that “cpu:0” worked just fine but “gpu:0” didn’t (which required setting up some quick code to prove all that), I cleaned out all the tf packages (tensorglow-gpu, tensorboard, and keras-tuner), and reinstalled tensorflow-gpu. Everything is humming happily again, but I need a less destructive Bayesian system.
    • Maybe this? An Introductory Example of Bayesian Optimization in Python with Hyperopt A hands-on example for learning the foundations of a powerful optimization framework
  • Meetings at Mission
    • Erik was stuck at a luncheon for the first meeting
    • Some new commits from Vadim, but he couldn’t make the meeting
    • Discussion about the Artificial Intelligence and Machine Learning, Technology Summit in April, and the AI Tech Connect Spring. Both are very aligned with industry (like AI + 3D Printing), which is not my thing, so I passed. I did suggest that IEEE ICTAI 2020 might be a good fit. Need to send info to John.
    • Still need to get started on the schedule for version 2 development. Include conferences and prep, and minimal assistance.

Phil 12.10.19

7:00 – ASRC GOES

  • Dissertation – got through the stories and games section. Then de-emphasizing lists, etc.
  • LMN prep (done) and demo
  • Evolver
    • Migrate to cookie cutter – done
    • Github – done
    • Try to make a package – done!
    • Start on paper/tutorial for IEEE ICTAI 2020. Need to compare against Bayesian system. Maybe just use the TF optimizer? Same models, same data, and they are very simple

Phil 12.9.19

7:00 – 8:00 ASRC

  • Saw this on Twitter this morning: Training Agents using Upside-Down Reinforcement Learning
    • Traditional Reinforcement Learning (RL) algorithms either predict rewards with value functions or maximize them using policy search. We study an alternative: Upside-Down Reinforcement Learning (Upside-Down RL or UDRL), that solves RL problems primarily using supervised learning techniques. Many of its main principles are outlined in a companion report [34]. Here we present the first concrete implementation of UDRL and demonstrate its feasibility on certain episodic learning problems. Experimental results show that its performance can be surprisingly competitive with, and even exceed that of traditional baseline algorithms developed over decades of research.
  • I wonder how it compares with Stuart Russell’s paper Cooperative Inverse Reinforcement Learning
    • For an autonomous system to be helpful to humans and to pose no unwarranted risks, it needs to align its values with those of the humans in its environment in such a way that its actions contribute to the maximization of value for the humans. We propose a formal definition of the value alignment problem as cooperative inverse reinforcement learning (CIRL). A CIRL problem is a cooperative, partial- information game with two agents, human and robot; both are rewarded according to the human’s reward function, but the robot does not initially know what this is. In contrast to classical IRL, where the human is assumed to act optimally in isolation, optimal CIRL solutions produce behaviors such as active teaching, active learning, and communicative actions that are more effective in achieving value alignment. We show that computing optimal joint policies in CIRL games can be reduced to solving a POMDP, prove that optimality in isolation is suboptimal in CIRL, and derive an approximate CIRL algorithm.
  • Dissertation
    • In the Ethics section, change ‘civilization’ to ‘culture’, and frame it in terms of the simulation – done
    • Last slide should be ‘Thanks for coming to my TED talk’
    • Ping Don’s composer and choreographer, if I can find them
    • Cool! A T-O style universe map (Unmismoobjetivo , via Wikipedia). The logarithmic distance effect is something that I need to look into: universe
  • Evolver
    • Quickstart
    • User’s guide
    • Finished commenting!
    • Flailing on geting the documentation tools to work.
  • ML Seminar
    • Double Crab Cake Platter (2) – 2 Vegetables – $34.00
    • Went over the Evolver. The Ensemble charts really make an impression, but overall, the code walkthrough is too difficult – there are two many moving parts. I need to write a paper with screengrabs that walk through the whole process. I’ll need to evaluate against Bayesian tuners, but I also have architecture search
    • The venue could be IEEE ICTAI 2020: The IEEE International Conference on Tools with Artificial Intelligence (ICTAI) is a leading Conference of AI in the Computer Society providing a major international forum where the creation and exchange of ideas related to artificial intelligence are fostered among academia, industry, and government agencies. It will be in Baltimore, I think.
  • Meeting with Aaron. He thinks that part of the ethics discussion needs to be an addressing of the status quo

Phil 12.7.19

You can now have an AI DM. AI Dungeon 2. Here’s an article about it: You can do nearly anything you want in this incredible AI-powered game. It looks like a GPT-2 model trained with chooseyouradventure. Here’s the “how we did it”. Wow

The Toxins We Carry (Whitney Phillips)

  • My proposal is that we begin thinking ecologically, an approach I explore with Ryan Milner, a communication scholar, in our forthcoming book You Are Here: A Field Guide for Navigating Polluted Information. From an ecological perspective, Wardle’s term “information pollution” makes perfect sense. Building on Wardle’s definition, we use the inverted form “polluted information” to emphasize the state of being polluted and to underscore connections between online and offline toxicity. One of the most important of these connections is just how little motives matter to outcomes. Online and off, pollution still spreads, and still has consequences downstream, whether it’s introduced to the environment willfully, carelessly, or as the result of sincere efforts to help. The impact of industrial-scale polluters online—the bigots, abusers, and chaos agents, along with the social platforms that enable them—should not be minimized. But less obvious suspects can do just as much damage. The truth is one of them.
  • Taking an ecological approach to misinformation

Phil 12.5.19

ASRC GOES 7:00 – 4:30, 6:30 – 7:00

  • Write up something for Erik and John?
  • Send gdoc link to Bruce – done
  • apply for TF Dev invite – done
  • Schedule physical! – done
  • Dissertation – more Designing for populations
  • Evolver
    • Comment EvolutionaryOptimizer – almost done
    • Comment ModelWriter
    • Quickstart
    • User’s guide
    • Comment the excel utils?
  • Waikato meeting with Alex and Panos

Phil 12.4.19

7:00 – 8:00 ASRC GOES

  • Dissertation – back to designing for populations
  • Timesheet revisions
  • Applying for MS Project
  • Evolver – more documentation
  • GOES Meeting
    • Bought a copy of MS Project for $15
    • Send Erik a note about permission to charge for TF Dev Conf
    • Good chat with Bruce about many things, including CASSIE as a Cloud service
    • Re-send links to common satellite dictionary
    • Vadim got a pendulum working
  • Meeting with Roger
    • Got a tour of the new building
    • Lots of VR discussion
    • Some academic future options

Phil 12.3.19

7:00 – 4:00 ASRC GOES

  • Dissertation – reworked the last paragraph of the Reflection and reflex section
  • Evolver – more documentation
  • Send this out to the HCC mailing list: The introvert’s academic “alternative networking” guide
  • Arpita’s proposal defense
    • Stanford: Open information extraction (open IE) refers to the extraction of relation tuples, typically binary relations, from plain text, such as (Mark Zuckerberg; founded; Facebook). The central difference from other information extraction is that the schema for these relations does not need to be specified in advance; typically the relation name is just the text linking two arguments. For example, Barack Obama was born in Hawaii would create a triple (Barack Obama; was born in; Hawaii), corresponding to the open domain relation was-born-in(Barack-Obama, Hawaii).
    • Open Information Extraction 5
    • UKG Open Information Extraction
    • Supervised Ensemble of Open IE
    • Datasets
      • AW-OIE
      • AW-OIE-C
      • WEB
      • NYT
      • PENN
    • Why the choice of 100 dimensins for your symentic embedding? How does it compare to other dimensions?
    • Contextual embedding for NLP?
    • Input-Output Hidden Markov Model (version on GitHub)

Phil 12.2.19

December! Yikes!

7:00 – 8:00 ASRC GOES

  • Dissertation
    • Designing for populations
  • Evolver
    • Oh, boy – big IDE updates. Hoping nothing breaks
      • Had to connect back to python
      • TF still works!
    • Commenting and documenting
      • Finished ValueAxis.py
      • Starting TF2OptomizerBase.py
  • ML seminar (food fro La Madeleine!)
  • Meeting with Aaron M