Phil 3.4.19

7:00 – 5:00 ASRC

  • Build an interactive SequenceAnalyzer. The adjustments are
    • Number of buckets
    • Percentages for each analytic (percentages to keep/discard
    • Selectable skip words that can be added to a list (in the db?)
  • Algorithm
    1. Find the most common words across all groups, these are skip_words
    2. Find the most common words along the entire series of posts per player and eliminate them
    3. Find the most common/central words across all sequences and keep those as belief places
    4. For each sequence by group, find the most common/central words after the belief places. These are the belief spaces.
    5. Build an adjacency matrix of players, groups, places and spaces
    6. Build submatrices for centrality calculations? This could be rather than finding the most common
    7. Possible word2vec variations?
      1. It seems to me that I might be able to use direction cosines and dynamic time warping to calculate the similarity of posts and align them better than the overall scaling that I’m doing now. DM posts introducing a room should align perfectly, and then other scaling could happen between those areas of greatest alignment
  • Display
    • Menu:
      • Save spreadsheet (includes config, included words, posts(?), trajectories)
      • load data
      • select database
      • select group within db
      • load/save config file
      • clear all
    • Fields
      • percent for A1, A2, A3, A4
      • Centrality/Sum switch
      • BOW/TF-IDF switch
      • Word2vec switch?
    • Textarea (areas? tabbed?)
      • Table with rows as sequence step. Columns are grouped by places, spaces, groups, and players
    • Work on Antonio’s paper got a first draft on introduction and motivation
    • BAA
      • Upload latex and references to laptop
    • Haircut! Pack!
    • Model-Based Reinforcement Learning for Atari
      • Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction — substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes. In this paper, we explore how video prediction models can similarly enable agents to solve Atari games with orders of magnitude fewer interactions than model-free methods. We describe Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models and present a comparison of several model architectures, including a novel architecture that yields the best results in our setting. Our experiments evaluate SimPLe on a range of Atari games and achieve competitive results with only 100K interactions between the agent and the environment (400K frames), which corresponds to about two hours of real-time play.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.