Phil 8.9.18

7:00 – 3:00 ASRC MKT

  • Working on the herding slide
  • Animals Teach Robots to Find Their Way
    • Michael Milford – “I always regard spatial intelligence as a gateway to understanding higher-level intelligence. It’s the mechanism by which we can build on our understanding of how the brain works.”
  • Direct recordings of grid-like neuronal activity in human spatial navigation
    • Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats, and monkeys, are believed to support a wide range of spatial behaviors. By recording neuronal activity from neurosurgical patients performing a virtual-navigation task we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes. Human grid cells
  • The cognitive map in humans: spatial navigation and beyond
    • The ‘cognitive map’ hypothesis proposes that brain builds a unified representation of the spatial environment to support memory and guide future action. Forty years of electrophysiological research in rodents suggest that cognitive maps are neurally instantiated by place, grid, border and head direction cells in the hippocampal formation and related structures. Here we review recent work that suggests a similar functional organization in the human brain and yields insights into how cognitive maps are used during spatial navigation. Specifically, these studies indicate that (i) the human hippocampus and entorhinal cortex support map-like spatial codes, (ii) posterior brain regions such as parahippocampal and retrosplenial cortices provide critical inputs that allow cognitive maps to be anchored to fixed environmental landmarks, and (iii) hippocampal and entorhinal spatial codes are used in conjunction with frontal lobe mechanisms to plan routes during navigation. We also discuss how these three basic elements of cognitive map based navigation—spatial coding, landmark anchoring and route planning—might be applied to nonspatial domains to provide the building blocks for many core elements of human thought.
  • Spatial scaffold effects in event memory and imagination
    • Jessica Robin
    • Spatial context is a defining feature of episodic memories, which are often characterized as being events occurring in specific spatiotemporal contexts. In this review, I summarize research suggesting a common neural basis for episodic and spatial memory and relate this to the role of spatial context in episodic memory. I review evidence that spatial context serves as a scaffold for episodic memory and imagination, in terms of both behavioral and neural effects demonstrating a dependence of episodic memory on spatial representations. These effects are mediated by a posterior-medial set of neocortical regions, including the parahippocampal cortex, retrosplenial cortex, posterior cingulate cortex, precuneus, and angular gyrus, which interact with the hippocampus to represent spatial context in remembered and imagined events. I highlight questions and areas that require further research, including differentiation of hippocampal function along its long axis and subfields, and how these areas interact with the posterior-medial network.
  • Identifying the cognitive processes underpinning hippocampal-dependent tasks (preprint, not peer-reviewed)
    • Autobiographical memory, future thinking and spatial navigation are critical cognitive functions that are thought to be related, and are known to depend upon a brain structure called the hippocampus. Surprisingly, direct evidence for their interrelatedness is lacking, as is an understanding of why they might be related. There is debate about whether they are linked by an underlying memory-related process or, as has more recently been suggested, because they each require the endogenous construction of scene imagery. Here, using a large sample of participants and multiple cognitive tests with a wide spread of individual differences in performance, we found that these functions are indeed related. Mediation analyses further showed that scene construction, and not memory, mediated (explained) the relationships between the functions. These findings offer a fresh perspective on autobiographical memory, future thinking, navigation, and also on the hippocampus, where scene imagery appears to play a highly influential role.
  • Home early to wait for FedEx. And here’s a fun thing: dkgpgukx0aatbal