Phil 11.29.17

7:00 – 4:30 ASRC MKT

Pattern is a web mining module for the Python programming language.

  • It has tools for data mining (Google, Twitter and Wikipedia API, a web crawler, a HTML DOM parser), natural language processing (part-of-speech taggers, n-gram search, sentiment analysis, WordNet), machine learning (vector space model, clustering, SVM), network analysis and visualization.
  • Promoted Speaker–listener neural coupling underlies successful communication notes to Phlog
  • Added some bits to the JCSCW Flocking and herding article

  • Alignment in social interactions
    • According to the prevailing paradigm in social-cognitive neuroscience, the mental states of individuals become shared when they adapt to each other in the pursuit of a shared goal. We challenge this view by proposing an alternative approach to the cognitive foundations of social interactions. The central claim of this paper is that social cognition concerns the graded and dynamic process of alignment of individual minds, even in the absence of a shared goal. When individuals reciprocally exchange information about each other’s minds processes of alignment unfold over time and across space, creating a social interaction. Not all cases of joint action involve such reciprocal exchange of information. To understand the nature of social interactions, then, we propose that attention should be focused on the manner in which people align words and thoughts, bodily postures and movements, in order to take one another into account and to make full use of socially relevant information.
    • The concept of alignment has since evolved and is used to describe the multi-level, dynamic, and interactive mechanisms that underpin the sharing of people’s mental attitudes and representations in all kinds of social interactions (Dale, Fusaroli, & Duran, 2013). (pp 253)
    • The underlying justification for subsuming all these cases under the same mechanism is that cognition and action cannot be separated. The sharing of minds and bodies can then be conceptualized in terms of an integrated system of alignment, defined as the dynamic coupling of behavioural and/or cognitive states of two people (Dumas, Laroche, & Lehmann, 2014). (pp 253)
    • we are interested in the explanatory significance of alignment for a more general theory of social interaction, not in instrumental behaviour and/or alignment per se. (pp 254)
    • The central claim of this paper is that the alignment of minds, which emerges in social interactions, involves the reciprocal exchange of information whereby individuals adjust minds and bodies in a graded and dynamic manner. As these processes of alignment unfold, interacting partners will exchange information about each other’s minds and therefore act socially, whether or not a shared goal is in place. (pp 254)
    • In particular, in recent theoretical and empirical work on social cognition, reciprocity is increasingly recognized as a useful resource to capture the ‘‘jointness” of a joint action. Interpersonal understanding can be achieved by reading into one another’s mind reciprocally (Butterfill, 2013), and an explanation of the processes whereby the alignment of minds and bodies unfolds in space and time should involve an account of reciprocity (Zahavi & Rochat, 2015). In the process of a reciprocal exchange of information, individuals may adapt to varying degrees to one another. This is certainly the case in instances of temporal synchronisation and coordination in which physical alignment in time and space has been theorized to depend on cognitive models of adaptation (Elliott, Chua, & Wing, 2016; Hayashi & Kondo, 2013; Repp & Su, 2013) and thus on reciprocal interactions (D’Ausilio, Novembre, Fadiga, & Keller, 2015; Keller, Novembre, & Hove, 2014; Tognoli & Kelso, 2015). The behaviour of one player results in a change in behaviour of the other in a reciprocal way so as to achieve temporal synchrony. Interestingly, though not surprisingly, this reciprocal exchange of information results in physical alignment, which in turn has also been shown to result in greater degrees of affiliation and greater mental alignment (Hove & Risen, 2009; Rabinowitch & Knafo-Noam, 2015; Wiltermuth & Heath, 2009). Specifically, we suggest that, rather than a focus on the sharedness of the intended goal, we should attend to the graded exchange of information that creates alignment. The most social of interactions, in our formulation, are those in which ‘‘live” (‘‘online”, see Schilbach, 2014) information is exchanged dynamically (i.e. over time, across multiple points) bidirectionally and used to adapt behaviour and align with another (Jasmin et al., 2016). (pp 255)
    • Indeed, it is possible to have reciprocity and thus social interaction without cooperation. This would be the case, for example, in a competitive scenario in which the minds of the subjects are aligned at the appropriate level of description, and the sharing is essential to solve social dilemmas involving antagonistic behaviour (Bratman, 2014). In these exchanges, what is needed for the minds of the agents to attune to one another is that they adapt thoughts, bodily postures and movements, to take one another into account and reason as a team, even though the team might consist of competitive actors where none is aware that they are acting from the perspective of the same group and in the pursuit of some common goal (Bacharach, 2006). (pp 255)
    • fundamentally social nature has to do with the process whereby systems reciprocate thoughts and experiences, rather than with the endpoint i.e. the goal. It turns out that two features are often taken to be central to the process whereby interacting agents align minds and bodies. First, the interacting agents must be aware that they are doing something together with others. Second, the success of their joint performance is taken as a measure of how shared the participants’ goals are. (pp 255)
    • our suggestion is that what matters for the relevant alignment of minds and bodies to occur is the reciprocal exchange of information, not awareness of the reciprocal exchange of information. (pp 255)
      • This is all that is needed for flocking to happen. It is the range of that exchange that determines the phase change from independent to flock to stampede. Trust is involved in the reciprocity too, I think
    • Becoming mutually aware that we are sharing attitudes, dispositions, bodily postures, perhaps goals, does not mean that the ‘jointness’ of our actions has become available to each of us for conscious report. Reciprocity of awareness is emphatically not the same as awareness of reciprocity. The process of reciprocally exchanging information and mutually adapting to one another need not necessarily result in any degree of shared awareness. (pp 256)
    • In animals, a signal, for example about the source of food, that is too weak for an individual fish to follow can be followed by a group through the simple rules of bodily alignment that create shoaling behaviour (Grunbaum, 1998). Shoaling behaviour can also be observed in humans (Belz, Pyritz, & Boos, 2013), who can achieve group advantage through more complex forms of adjustment than just bodily alignment. Pairs of participants trying to detect a weak visual signal can achieve a greater group advantage when they align the terms they use to report their confidence in what they saw (Fusaroli et al., 2012). Indeed, linguistic alignment at many levels can be observed in dialogue (Pickering & Garrod, 2004) and can improve comprehension (Adank, Hagoort, & Bekkering, 2010; Fusaroli et al., 2012). (pp 256)
    • Much research has been driven, so far, by the implicit goal of identifying optimal group performance as a proxy for mental alignment (Fusaroli et al., 2012), however, there is conceptual room and empirical evidence for arguing that optimal task performance is not a good index of mental alignment or ‘optimal sociality’. In other words, taking achievement of a shared goal as the paradigm of a social interaction leads to the binary conception of sociality according to which an interaction is either (optimally) social, or it is not. (pp 256)
      • This is a problem that I have with opinion dynamics models. Convergence on a particular opinion isn’t the only issue. There is a dynamic process where opinions fall in and out of favor. This is the difference between the contagion model, which is one way (uninfected->infected) and motion through belief space. The goal really doesn’t matter, except in a subset of cases (Though these may be very important)
    • Two systems can interact when they have access to information relating to each other (Bilek et al., 2015). There are different ways of exchanging information between systems and hence different types of interaction (Liu & Pelowski, 2014), but in every case some kind of alignment occurs (Coey, Varlet, & Richardson, 2012; Huygens, 1673). (pp 257)
    • Such offline interaction can be contrasted with the case of online social interactions, where both participants act. The distinction between offline and online social interaction tasks is now acknowledged as crucial for advancing our understanding of the cognition processes underlying social interaction (Schilbach, 2014). (pp 257)
    • In contrast to salsa, consider the case of tango in which movements are improvised and as such require constant, mutual adaptation (Koehne et al., 2015; Tateo, 2014). Tango dancers have access to information relating to each other and, by virtue of the task, they exchange information with one another across time in a reciprocal and bidirectional fashion. The juxtaposition of tango with salsa highlights a spectrum of degrees of mutual reciprocity, with a richer form of interaction and greater need for alignment in tango compared with salsa.
    • we will take reciprocity to be the primary requirement for social interactions. We suggest that reciprocity can be identified with a special kind of alignment, mutual alignment, involving adjustment in both parties to the interaction. However, not all cases of joint action lead to mutual alignment. It is important to distinguish this mutual alignment from other types of alignment, which do not involve a reciprocal exchange of information between the agents. (pp 257)
    • In contrast to salsa, consider the case of tango in which movements are improvised and as such require constant, mutual adaptation (Koehne et al., 2015; Tateo, 2014). Tango dancers have access to information relating to each other and, by virtue of the task, they exchange information with one another across time in a reciprocal and bidirectional fashion. The juxtaposition of tango with salsa highlights a spectrum of degrees of mutual reciprocity, with a richer form of interaction and greater need for alignment in tango compared with salsa. (pp 257)
    • AlignmentInSocialInteractions(pp 258)
    • The biggest challenge currently facing philosophers and scientists of social cognition is to understand social interactions. We suggest that this problem is best approached at the level of processes of mental alignment rather than through joint action tasks based on shared goals, and we propose that the key process is one of reciprocal, dynamic and graded adaptation between the participants in the interaction. Defining social interactions in terms of reciprocal patterns of alignment shows that not all joint actions involve reciprocity and also that social interactions can occur in the absence of shared goals. This approach has two particular advantages. First, it emphasises the key point that interactions can only be fully understood at the level of the group, rather than the individual. The pooling together of individual mental resources generates results that exceed the sum of the individual contributions. But, second, our approach points towards the mechanisms of adaptation that must be occurring within each individual in order to create the interaction (Friston & Frith, 2015). (pp 259)
    • This picture of social interaction in terms of mental alignment suggests two important theoretical developments. One is about a possible way to characterize the idea that types of social interaction lie on a continuum of possible solutions. If we focus on the task or the shared goal being pursued by agents jointly, as the current literature suggests, then only limited subdivisions of types of interaction will emerge. If, however, our focus extends so as to integrate the nature of the interaction, conceived of in terms of information exchange, then we can arrive at a higher degree of resolution of the space in which social interaction lie. This will define a spectrum of types of interaction (not just offline versus online social cognition), suggesting a dimensional rather than a discrete picture. After all, alignment comes in degrees and a spectrum-like definition of sociality implies that there is a variety of forms of alignment and hence of interactions. (pp 269)
      • My work would indicate that meaningful transitions occur for Unaligned (pure explore), Complex (flocking), and Total (stampede).
  • Continuing to work on The Socio-Temporal Brain: Connecting People in Time here
    • Not as good as I thought it would be. Some useful items, but there is no brain analysis of chorusing animals, just the co-mention
  • Continuing Research Browser white paper. Added note to work through linking multiple tags to the same item with visibility controls. Kindle has a feature like this.
  • Reading section 16.7 on personalized web services  (pp 372 – 375) for words and concepts for Augmented Data Discovery. Then Where to Add Actions in Human-in-the-Loop Reinforcement LearningPolicy Shaping: Integrating Human Feedback with Reinforcement Learning, and AXIS: Generating Explanations at Scale with Learner sourcing and Machine Learning

 

3 thoughts on “Phil 11.29.17

  1. Pingback: Phil 11.30.17 | viztales

  2. Pingback: Phil 12.1.17 | viztales

  3. Pingback: Phil 12.4.17 | viztales

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.