Phil 9.18.17

7:00 – 4:00 ASRC MKT

      • Here’s the code that makes it:
        \vec{aoc}_x= \frac{\{
        \sum_{n=1}^{n = x-1} \vec{aop}_n (1 - \frac{\| \vec{app}_x - \vec{app_n} \| }{r}) + 
        \sum_{n=x+ 1}^{n = max} \vec{aop}_n (1 - \frac{\| \vec{app}_x - \vec{app}_n \| }{r})
        \mid (\|\vec{app}_x - \vec{app}_n \| < r)\}}{1-\sum_{n=1}^{n=max}[\|\vec{app}_n - \vec{app}_x\| < r]}
      • Given these conditions:
        • aoc is the current orientation vector
        • aop is the previous orientation vector
        • app is the current position
        • app is the previous position
        • r is the exploit radius
      • And this is the position update function: PositionUpdate
        • aop is the previous orientation vector
        • acp is the current position
        • app is the previous position
        • dt is elapsed time
      • Working on describing the high-dimensional slew using a diagram.