7:00 – 5:00 ASRC
- Finished section 3.14
- Back to reading Data Mining.Currently on Chapter 3. Done!
- Chapter 4.
- Discussion with Aaron, then Bob about sprint-ish planning.
7:00 – 5:00 ASRC
7:00 – 4:00 ASRC
7:00 – 4:30 ASRC
7:00 – 4:30 ASRC
public String junkOrGood(){
boolean junk = true;
if(personCharacterization.equals(INAPPROPRIATE)){
return "junk";
}
if(sourceType.equals(MACHINE_GENERATED)){
return "junk";
}
if(qualityCharacterization.equals(LOW) || qualityCharacterization.equals(MINIMAL))
{
return "junk";
}
if(trustworthiness.equals(NOT_CREDIBLE) || trustworthiness.equals(DISTRUSTWORTHY) || trustworthiness.equals(VERY_DISTRUSTWORTHY)){
return "junk";
}
return "good";
}
Time taken to build model: 0.01 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 33 78.5714 % Incorrectly Classified Instances 9 21.4286 % Kappa statistic 0.5116 Mean absolute error 0.2143 Root mean squared error 0.4629 Relative absolute error 51.8311 % Root relative squared error 102.1856 % Total Number of Instances 42 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.750 0.200 0.600 0.750 0.667 0.519 0.747 0.509 junk 0.800 0.250 0.889 0.800 0.842 0.519 0.810 0.876 good Weighted Avg. 0.786 0.236 0.806 0.786 0.792 0.519 0.792 0.771 === Confusion Matrix === a b <-- classified as 9 3 | a = junk 6 24 | b = good
=== Stratified cross-validation === === Summary === Correctly Classified Instances 35 83.3333 % Incorrectly Classified Instances 7 16.6667 % Kappa statistic 0.637 Mean absolute error 0.1667 Root mean squared error 0.4082 Relative absolute error 40.3131 % Root relative squared error 90.1193 % Total Number of Instances 42 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.917 0.200 0.647 0.917 0.759 0.660 0.858 0.617 junk 0.800 0.083 0.960 0.800 0.873 0.660 0.858 0.911 good Weighted Avg. 0.833 0.117 0.871 0.833 0.840 0.660 0.858 0.827 === Confusion Matrix === a b <-- classified as 11 1 | a = junk 6 24 | b = good
Time taken to build model: 0.02 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 32 76.1905 % Incorrectly Classified Instances 10 23.8095 % Kappa statistic 0.5139 Mean absolute error 0.2381 Root mean squared error 0.488 Relative absolute error 57.5901 % Root relative squared error 107.7131 % Total Number of Instances 42 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.917 0.300 0.550 0.917 0.687 0.558 0.808 0.528 junk 0.700 0.083 0.955 0.700 0.808 0.558 0.808 0.882 good Weighted Avg. 0.762 0.145 0.839 0.762 0.773 0.558 0.808 0.781 === Confusion Matrix === a b <-- classified as 11 1 | a = junk 9 21 | b = good
Time taken to build model: 1.41 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 34 80.9524 % Incorrectly Classified Instances 8 19.0476 % Kappa statistic 0.4815 Mean absolute error 0.2238 Root mean squared error 0.3805 Relative absolute error 54.1364 % Root relative squared error 83.9928 % Total Number of Instances 42 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.500 0.067 0.750 0.500 0.600 0.499 0.729 0.682 junk 0.933 0.500 0.824 0.933 0.875 0.499 0.729 0.823 good Weighted Avg. 0.810 0.376 0.803 0.810 0.796 0.499 0.729 0.783 === Confusion Matrix === a b <-- classified as 6 6 | a = junk 2 28 | b = good
7:00 – 4:30 ASRC
time taken to build model: 0.07 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 33 78.5714 % Incorrectly Classified Instances 9 21.4286 % Kappa statistic 0.5116 Mean absolute error 0.2143 Root mean squared error 0.4629 Relative absolute error 51.8311 % Root relative squared error 102.1856 % Total Number of Instances 42 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.750 0.200 0.600 0.750 0.667 0.519 0.757 0.540 junk 0.800 0.250 0.889 0.800 0.842 0.519 0.810 0.876 good Weighted Avg. 0.786 0.236 0.806 0.786 0.792 0.519 0.795 0.780 === Confusion Matrix === a b <-- classified as 9 3 | a = junk 6 24 | b = good