Phil 12.20.18

7:00 – 4:00 ASRC NASA/PhD

  • Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network
    • As neuroscience gradually uncovers how the brain represents and computes with high-level spatial information, the endeavor of constructing biologically-inspired robot controllers using these spatial representations has become viable. Grid cells are particularly interesting in this regard, as they are thought to provide a general coordinate system of space. Artificial neural network models of grid cells show the ability to perform path integration, but important for a robot is also the ability to calculate the direction from the current location, as indicated by the path integrator, to a remembered goal. This paper presents a neural system that integrates networks of path integrating grid cells with a grid cell decoding mechanism. The decoding mechanism detects differences between multi-scale grid cell representations of the present location and the goal, in order to calculate a goal-direction signal for the robot. The model successfully guides a simulated agent to its goal, showing promise for implementing the system on a real robot in the future.
  • Path integration and the neural basis of the ‘cognitive map’
    • Accumulating evidence indicates that the foundation of mammalian spatial orientation and learning is based on an internal network that can keep track of relative position and orientation (from an arbitrary starting point) on the basis of integration of self-motion cues derived from locomotion, vestibular activation and optic flow (path integration).
    • Place cells in the hippocampal formation exhibit elevated activity at discrete spots in a given environment, and this spatial representation is determined primarily on the basis of which cells were active at the starting point and how far and in what direction the animal has moved since then. Environmental features become associatively bound to this intrinsic spatial framework and can serve to correct for cumulative error in the path integration process.
    • Theoretical studies suggested that a path integration system could involve cooperative interactions (attractor dynamics) among a population of place coding neurons, the synaptic coupling of which defines a two-dimensional attractor map. These cells would communicate with an additional group of neurons, the activity of which depends on the conjunction of movement speed, location and orientation (head direction) information, allowing position on the attractor map to be updated by self-motion information.
    • The attractor map hypothesis contains an inherent boundary problem: what happens when the animal’s movements carry it beyond the boundary of the map? One solution to this problem is to make the boundaries of the map periodic by coupling neurons at each edge to those on the opposite edge, resulting in a toroidal synaptic matrix. This solution predicts that, in a sufficiently large space, place cells would exhibit a regularly spaced grid of place fields, something that has never been observed in the hippocampus proper.
    • Recent discoveries in layer II of the medial entorhinal cortex (MEC), the main source of hippocampal afferents, indicate that these cells do have regularly spaced place fields (grid cells). In addition, cells in the deeper layers of this structure exhibit grid fields that are conjunctive for head orientation and movement speed. Pure head direction neurons are also found there. Therefore, all of the components of previous theoretical models for path integration appear in the MEC, suggesting that this network is the core of the path integration system.
    • The scale of MEC spatial firing grids increases systematically from the dorsal to the ventral poles of this structure, in much the same way as is observed for hippocampal place cells, and we show how non-periodic hippocampal place fields could arise from the combination of inputs from entorhinal grid cells, if the inputs cover a range of spatial scales rather than a single scale. This phenomenon, in the spatial domain, is analogous to the low frequency ‘beats’ heard when two pure tones of slightly different frequencies are combined.
    • The problem of how a two-dimensional synaptic matrix with periodic boundary conditions, postulated to underlie grid cell behaviour, could be self-organized in early development is addressed. Based on principles derived from Alan Turing’s theory of spontaneous symmetry breaking in chemical systems, we suggest that topographically organized, grid-like patterns of neural activity might be present in the immature cortex, and that these activity patterns guide the development of the proposed periodic synaptic matrix through a mechanism involving competitive synaptic plasticity.
  • Wormholes in virtual space: From cognitive maps to cognitive graphs
    • Cognitive maps are thought to have a metric Euclidean geometry.
    • Participants learned a non-Euclidean virtual environment with two ‘wormholes’.
    • Shortcuts reveal that spatial knowledge violates metric geometry.
    • Participants were completely unaware of the wormholes and geometric inconsistencies.
    • Results contradict a metric Euclidean map, but support a labelled ‘cognitive graph’.
  • Back to TimeSeriesML
    • Encryption class – done
      • Create a key and save it to file
      • Read a key in from a file into global variable
      • Encrypt a string if there is a key
      • Decrypt a string if there is a key
    • Postgres class – reading part is done
      • Open a global connection and cursor based on a config string
      • Run queries and return success
      • Fetch results of queries as lists of JSON objects

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.