Phil 7.24.2025

Tasks

  • Groceries – done
  • Emissions – done
  • Goodwill – done
  • Mess with Outlook? Procrastinating

[2507.17636] Who Attacks, and Why? Using LLMs to Identify Negative Campaigning in 18M Tweets across 19 Countries

  • Negative campaigning is a central feature of political competition, yet empirical research has been limited by the high cost and limited scalability of existing classification methods. This study makes two key contributions. First, it introduces zero-shot Large Language Models (LLMs) as a novel approach for cross-lingual classification of negative campaigning. Using benchmark datasets in ten languages, we demonstrate that LLMs achieve performance on par with native-speaking human coders and outperform conventional supervised machine learning approaches. Second, we leverage this novel method to conduct the largest cross-national study of negative campaigning to date, analyzing 18 million tweets posted by parliamentarians in 19 European countries between 2017 and 2022. The results reveal consistent cross-national patterns: governing parties are less likely to use negative messaging, while ideologically extreme and populist parties — particularly those on the radical right — engage in significantly higher levels of negativity. These findings advance our understanding of how party-level characteristics shape strategic communication in multiparty systems. More broadly, the study demonstrates the potential of LLMs to enable scalable, transparent, and replicable research in political communication across linguistic and cultural contexts.

[2507.13919] The Levers of Political Persuasion with Conversational AI

  • There are widespread fears that conversational AI could soon exert unprecedented influence over human beliefs. Here, in three large-scale experiments (N=76,977), we deployed 19 LLMs-including some post-trained explicitly for persuasion-to evaluate their persuasiveness on 707 political issues. We then checked the factual accuracy of 466,769 resulting LLM claims. Contrary to popular concerns, we show that the persuasive power of current and near-future AI is likely to stem more from post-training and prompting methods-which boosted persuasiveness by as much as 51% and 27% respectively-than from personalization or increasing model scale. We further show that these methods increased persuasion by exploiting LLMs’ unique ability to rapidly access and strategically deploy information and that, strikingly, where they increased AI persuasiveness they also systematically decreased factual accuracy.

SBIRs

  • 9:00 standup – done
  • 9:30 more pair programming with Ron – good progress
  • 4:00 SEG meeting – some data got generated, I’ll take a look on Tuesday.

GPT Agents