7:00 – 4:00 ASRC
- Adding more model feedback
- Something more to think about WRT Group Polarization models? Collective Memory and Spatial Sorting in Animal Groups
- Need to be able to associate an @attribute key/value map with Labeled2Dmatrix rows so that we can compare different nominal values across a shared set of numeric columns. This may wind up being a derived class?
- Working on adding an array of key/value maps;
- Forgot to add the name to the @data section – oops!
- text is added to ARFF out. Should I add it to the xlsx outputs as well?
- Here’s the initial run against the random test data within the class (L2D.arff).
=== Run information === Scheme: weka.classifiers.bayes.NaiveBayes Relation: testdata Instances: 8 Attributes: 12 name sv1 sv2 sv3 p1 p2 p3 p4 s1 s2 s3 s4 Test mode: split 66.0% train, remainder test === Classifier model (full training set) === Naive Bayes Classifier Class Attribute p1 p2 p3 p4 s1 s2 s3 s4 (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) ======================================================================= sv1 p4-sv1 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 s2-sv1 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 p2-sv1 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 s1-sv1 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 [total] 4.0 5.0 4.0 5.0 5.0 5.0 4.0 4.0 sv2 p2-sv2 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 s4-sv2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 p1-sv2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 s1-sv2 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 [total] 5.0 5.0 4.0 4.0 5.0 4.0 4.0 5.0 sv3 p2-sv3 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 p1-sv3 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 s4-sv3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 p3-sv3 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 p4-sv3 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 s2-sv3 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 s1-sv3 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 [total] 8.0 8.0 8.0 8.0 8.0 8.0 7.0 8.0 p1 mean 1 0 0 0 1 1 0 0 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 p2 mean 0 1 0 0 1 0 1 0 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 p3 mean 0 0 1 0 1 0 0 1 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 p4 mean 0 0 0 1 1 0 0 1 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 s1 mean 1 1 1 1 1 0 0 0 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 s2 mean 1 0 0 0 0 1 0 0 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 s3 mean 0 1 0 0 0 0 1 0 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 s4 mean 0 0 1 1 0 0 0 1 std. dev. 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 weight sum 1 1 1 1 1 1 1 1 precision 1 1 1 1 1 1 1 1 Time taken to build model: 0 seconds === Evaluation on test split === Time taken to test model on training split: 0 seconds === Summary === Correctly Classified Instances 0 0 % Incorrectly Classified Instances 3 100 % Kappa statistic 0 Mean absolute error 0.2499 Root mean squared error 0.4675 Relative absolute error 108.2972 % Root relative squared error 133.419 % Total Number of Instances 3 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.000 0.333 0.000 0.000 0.000 0.000 ? ? p1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 p2 0.000 0.333 0.000 0.000 0.000 0.000 ? ? p3 0.000 0.000 0.000 0.000 0.000 0.000 ? ? p4 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 s1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 s2 0.000 0.333 0.000 0.000 0.000 0.000 ? ? s3 0.000 0.000 0.000 0.000 0.000 0.000 ? ? s4 Weighted Avg. 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.611 === Confusion Matrix === a b c d e f g h <-- classified as 0 0 0 0 0 0 0 0 | a = p1 0 0 0 0 0 0 1 0 | b = p2 0 0 0 0 0 0 0 0 | c = p3 0 0 0 0 0 0 0 0 | d = p4 0 0 1 0 0 0 0 0 | e = s1 1 0 0 0 0 0 0 0 | f = s2 0 0 0 0 0 0 0 0 | g = s3 0 0 0 0 0 0 0 0 | h = s4
- Need to add text data from xml or from other(wrapper info? structured data? UI selections?) sources
